• 제목/요약/키워드: turbine layout

검색결과 27건 처리시간 0.02초

3 차원 고체요소모델을 활용한 해상풍력터빈 하부구조의 위상최적화 (Topology Optimization of Offshore Wind-Power Turbine Substructure Using 3D Solid-Element Model)

  • 김원철;정태진
    • 대한기계학회논문집A
    • /
    • 제38권3호
    • /
    • pp.309-314
    • /
    • 2014
  • 기계나 토목 구조물의 형상은 일반적으로 전통적인 방법들을 이용하여 얻었다. 예를 들면 전력송전탑이나 해상풍력 하부구조물 이외의 다른 구조물들도 조직적으로 만든다. 한편 컴퓨터 그래픽의 급속한 성장으로 인해, 진화된 구조해석 및 최적설계기법들을 이용하고 있다. 본 논문에서는 해상 풍력 터빈을 위한 자켓 구조물의 구조형상을 위상최적화 기법을 통하여 연구하였다. 이번 연구는 실제작동하중상태로 시뮬레이션을 위하여 다 하중으로 종속시켰으며, 최적화 목적 함수는 주어진 경계조건아래 컴플라이언스로 정의하였다. 최적화는 고유진동수와 체적을 구속함수로 사용하였으며, 1 단계 모델의 결과는 2 단계 구조를 위한 외형을 빠르게 볼 수 있도록 한다. 그 결과로 사각뿔대의 3D 모델은 위상최적화를 통하여 개발하였다.

REVIEW OF SUPERCRITICAL CO2 POWER CYCLE TECHNOLOGY AND CURRENT STATUS OF RESEARCH AND DEVELOPMENT

  • AHN, YOONHAN;BAE, SEONG JUN;KIM, MINSEOK;CHO, SEONG KUK;BAIK, SEUNGJOON;LEE, JEONG IK;CHA, JAE EUN
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.647-661
    • /
    • 2015
  • The supercritical $CO_2$ (S-$CO_2$) Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-$CO_2$ cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-$CO_2$ cycle. In this paper, the current development progress of the S-$CO_2$ cycle is introduced. Moreover, a quick comparison of various S-$CO_2$ layouts is presented in terms of cycle performance.

Floating Gas Power Plants

  • Kim, Hyun-Soo
    • 한국산업융합학회 논문집
    • /
    • 제23권6_1호
    • /
    • pp.907-915
    • /
    • 2020
  • Specification selection, Layout, specifications and combinations of Power Drives, and Ship motions were studied for FGPP(Floating Gas-fired Power Plants), which are still needed in areas such as the Caribbean, Latin America, and Southeast Asia where electricity is not sufficiently supplied. From this study, the optimal equipment layout in ships was derived. In addition, the difference between engine and turbine was verified through LCOE(Levelized Cost of Energy) comparison according to the type and combination of Power Drives. Analysis of Hs(Significant Height of wave) and Tp(spectrum Peak Period of wave) for places where this FGPP will be tested or applied enables design according to wave characteristics in Brazil and Indonesia. Normalized Sloshing Pressures of FGPP and LNG Carrier are verified using a sloshing analysis program, which is CFD(Computational Fluid Dynamics) software developed by ABS(American Bureau of Shipping). Power Transmission System is studied with Double bus with one Circuit Breaker Topology. A nd the CFD analysis allowed us to calculate linear roll damping coefficients for more accurate full load conditions and ballast conditions. Through RAO(Response Amplitude Operator) analysis, we secured data that could minimize the movement of ships according to the direction of waves and ship placement by identifying the characteristics of large movements in the beam sea conditions. The FGPP has been granted an AIP(Approval in Principle) from a classification society, the ABS.

인접한 조류발전용 수직축 터빈의 배치방식에 따른 성능 변화 (Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion)

  • 이정기;현범수
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권2호
    • /
    • pp.151-158
    • /
    • 2016
  • 조류발전단지는 유망한 해역에 터빈을 복수로 다배열하여 발전하는 시스템을 말한다. 이러한 단지는 각 터빈이 최대 효율로 작동하고, 최대 발전량을 얻을 수 있도록 설계되어야 하는데, 이를 위해서는 터빈 사이의 간섭으로 인한 성능 저하가 발생하지 않도록 터빈은 일정 거리를 두고 배치되어야 한다. 수평축 터빈의 경우 EMEC(European Marine Energy Centre)에서 배치거리를 제안하고 있으나, 수직축 터빈은 그러한 규정이 제안된 바 없다. 여러 연구 결과들에 따르면 수직축 터빈이 인접할 경우 성능의 향상까지 도모될 수 있으므로, 그 배치는 수평축 터빈보다 더욱 중요하게 검토될 필요가 있다. 본 논문에서는 수직축 터빈에 대하여 수평축 터빈과 같이 일정 거리를 두고 배치하는 것과 터빈을 인접하도록 배치하는 것과의 차이를 조사하였다. 이를 위해 두 터빈간의 거리와 회전방향을 파라메터로 하여 그에 따른 성능 차이를 수치해석적으로 연구하였고, 그 이유를 파악하고자 하였다. 본 연구를 통하여 가장 적절한 수치해석 영역과 조건을 설정할 수 있었으며, 인접한 두 터빈이 각각 반시계-시계방향으로 회전하는 것이 단독 터빈 2기 대비 약 9.2%의 성능향상이 예측되었다. 터빈이 대각으로 배치된 경우는 최대 약 5.6%정도 성능이 향상됨을 확인하였다. 본 연구는 수직축 터빈을 이용한 조류발전단지를 설계시 유용한 정보가 될 것으로 기대된다.

울돌목 조류발전의 연안물리적 관점에서의 고찰 (Coastal-physical cceanographic aspects in relation to the tidal current power generation in the Uldolmok)

  • 염기대;이광수;박진순;강석구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.516-519
    • /
    • 2005
  • The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam, during next year. and extensive coastal engineering research works have been carried out. In this paper we describes some observation results of the tide and tidal current. as well as modeling work in order to investigate the tide and tidal current regime change in relation to the tidal current power plant (TCPP) construction. The special modeling skill in order to consider the turbine operation in the TCPP is developed and applied to the estimation for the flow regime change by the simple layout of the tidal current power plant.

  • PDF

울돌목 조류발전의 연안물리적 관점에서의 고찰 (Coastal-physical cceanographic aspects in relation to the tidal current power generation in the Uldolmok)

  • 강석구;염기대;이광수;박진순
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.73-78
    • /
    • 2005
  • The pilot tidal current power plant is to be constructed at the Uldolmok between Chindo and Haenam, during next year, and extensive coastal engineering research works have been carried out. In this paper we describes some observation results of the tide and tidal current, as well as modeling work in order to investigate the tide and tidal current regime change In relation to the tidal current power plant [TCPP] construction. The special modeling skill in order to consider the turbine operation in the TCPP is developed and applied to the estimation for the flow regime change by the simple layout of the tidal current power plant.

  • PDF

고고도 장기체공 무인기 엔진용 다단 터보차저 구성 및 성능해석 (Establishment of Multi-Stage Turbocharger Layout for HALE UAV Engine and Its Performance Assessment)

  • 강영석;임병준;김종국
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.31-36
    • /
    • 2015
  • A multi-stage turbocharger system has been constructed for HALE UAV internal combustion engine. To boost rarefied intake air up to sea level condition, the turbocharger system should consist of 3 stages including heat exchanger located after compressor outlet to drop compressed air temperature. One dimensional system analysis has been conducted by matching required power between compressor and turbine and adequate turbochargers have been searched for from commercially available models targeting for automobiles. By applying commercial automobile turbochargers to the multi-stage turbocharger system, it is expected that considerable amount of research resources will be saved.

Thermal stress analysis for high pressure and temperature pipelines in ultra steam turbine (UST) system

  • 최대건
    • 대한조선학회지
    • /
    • 제52권2호
    • /
    • pp.19-24
    • /
    • 2015
  • A reliable assessment and analysis of the condition of high pressure and temperature steam pipelines requires defining stress state, which will take into consideration not just the impact of internal pressure and temperature but all applied loads. For that, usage of modeling and numerical methods for calculation and analysis of stress state is essential. The main aim of piping stress analysis is to check the design of piping layout, which will allow simple, efficient and economical piping supports and provide flexibility to the piping system for loads and stresses. The piping stress analysis is carried out using CAESER II software. By using this software we can evaluate stresses, stress ratios, flange condition, support loads, element forces and displacements at each node and points. In this paper, only the maximum and minimum displacement results are tabulated, which is also shown in detail by an example of main steam pipelines of UST Main Engine System [1].

웨이브 글라이더 메커니즘을 이용한 이동형 파력발전 시스템의 성능 테스트와 최적 설계에 관한 연구 (Study on Mobile Wave Energy Harvesting System Utilizing Wave Glider Mechanism)

  • 조한길;유선철
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.393-401
    • /
    • 2018
  • This paper reports a novel mobile-type wave energy harvesting system. The proposed system adopts a wave glider's propulsion mechanism. A wave glider's blades were mounted on a circular layout and generated a rotational motion. Combining the wave converting system with the wave glider, a mobile floating-type robotic buoy system was developed. It enabled the relocation of the buoy position, as well as station-keeping for long term operation. It had a small size and could efficiently harvest wave energy. A feasibility study and modeling were carried out, and a prototype system was constructed. Various tank tests were performed to optimize the proposed wave energy harvesting system.

새만금 방조제에 의한 풍력터빈 입사풍 변화의 전산유동해석 (Computational Flow Analysis on Wind Profile Change Projected to a Wind Turbine Behind Saemangeum Seawall)

  • 우상우;김현구
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.6-11
    • /
    • 2013
  • Jeollabuk-do has announced a future plan for the Saemangeum Wind Farm which includes the installation of fourteen wind turbines in a single line, located 500m back from the Saemangeum Seawall. It is anticipated as a positive effect that, for sea breeze blowing toward land, the average wind speed could be accelerated and the wind speed distribution could be uniformized by dint of the seawall, an upstream structure of the turbines. At the same time it is also anticipated as a negative effect that the strength of wind turbulence could be increased due to the flow separation generated at the back end of the seawall. According to the results of the computational fluid dynamics analysis of this paper, it has been observed that, at the 50m zone on the road surface located at the uppermost part of the Saemangeum Seawall, the average wind speed has been accelerated by approximately 6~7% and that wind shear has been decreased by 70%, but this positive effect disappears in the zone situated beyond the 100m from the back end of the seawall. It has also been observed that flow separation exists to a limited extent only below the bottom of the blade-sweeping circle and, furthermore, does not extend very far downstream of the wind. As a conclusion, it can be said that the seawall neither positively nor negatively affects the proposed Saemangeum Seawall Wind Farm layout.