• 제목/요약/키워드: turbine blade failure

검색결과 78건 처리시간 0.023초

표면거칠기와 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구 (A Study on Failure Analysis of Turbine Blade Using Surface Roughness and FEM)

  • 홍순혁;이동우;이선봉;조석수;주원식
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.170-177
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

100 MW급 가스터빈 1단 블레이드의 피로파괴 발생 원인 (Cause of Fatigue Failure of the First Blade of 100-MW Gas Turbine)

  • 윤희철;우창기
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.632-638
    • /
    • 2015
  • Many failures have been reported in gas turbine facilities owing to repeated startups and prolonged use of the turbines. In this study, the causes and mechanism of fatigue failure in the first blade of a gas turbine were analyzed using a finite element method to calculate the centrifugal force, bending force, and a modal analysis based on the stress-stiffening effect and harmonic response under the operating conditions. The results show that, fatigue damage was caused by the resonance conditions encountered, in which the first natural frequency declined along with an increase in the metal temperature of the blade. The position of the expected fatigue damage was shown to match the actual position of the cracking at the root area of the blade, which was on the concave side. In addition, the equivalence fatigue stress was observed to approach the fatigue limit.

Analysis and structural design of various turbine blades under variable conditions: A review

  • Saif, Mohd;Mullick, Parth;Imam, Ashhad
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.11-24
    • /
    • 2019
  • This paper presents a review study for energy-efficient gas turbines (GTs) with cycles which contributes significantly towards sustainable usage. Nonetheless, these progressive engines, operative at turbine inlet temperatures as high as $1600^{\circ}C$, require the employment of highly creep resistant materials for use in hotter section components of gas turbines like combustion chamber and blades. However, the gas turbine obtain its driving power by utilizing the energy of treated gases and air which is at piercing temperature and pushing by expanding through the several rings of steady and vibratory blades. Since the turbine blades works at very high temperature and pressure, high stress concentration are observed on the blades. With the increasing demand of service, to provide adequate efficiency and power within the optimized level, turbine blades are to be made of those materials which can withstand high thermal and working load condition for longer cycle time. This paper depicts the recent developments in the field of implementing the best suited materials for the GTs, selection of proper Thermal Barrier Coating (TBC), fracture analysis and experiments on failed or used turbine blades and several other designing and operating factors which are effecting the blade life and efficiency. It is revealed that Nickel based Superalloys were promising, Cast Iron with Zirconium and Pt-Al coatings are used as best TBC material, material defects are the foremost and prominent reason for blade failure.

진동 해석을 통한 300MW급 저압터빈 블레이드의 손상 원인 규명 (Identification of Failure Cause for 300MW LP turbine Blade through Vibration Analysis)

  • 김희수;배용채;이현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.794-799
    • /
    • 2005
  • The failure of blades frequently happened in the 300MW LP turbine until now and they are maintaining the blades periodically during outage. So the blade-disk system is analysed by FEM in order to identify the main cause of failure of blade row. It is found that the stress of root's hole is highest in comparison with other parts from the result of the steady stress analysis. Also, the two dangerous frequencies which is related to the resonance condition are found in the interference diagram. one is 1,516 Hz which is related to the operating speed. The other is 2,981 Hz which is related to the 1 nozzle passing frequency. The dynamic stress analysis is per-formed to identify more accurate root cause for failure of blade row. It is confirmed that the dynamic stress of the latter is higher than one of the former. From these results, it is concluded that the former has deeply something to do with the failure of blades more than the latter. Based on versatile investigation and deliberation, the change of blade's grouping is determined to avoid the resonance condition with the operating speed. After the blade grouping is changed, the former frequency vanish completely but the latter is still in existence in the interference diagram. Fortunately, It is confirmed that the dynamic stress of the new blade grouping is lower than one of the old blade grouping. 2 years has passed since modification and the LP turbine is operated well without failure so far.

  • PDF

진동 해석을 통한 300 MW급 저압터빈 블레이드의 손상 원인 규명 (Identification of Failure Cause for 300 MW LP Turbine Blade through Vibration Analysis)

  • 배용채;이현;김희수
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1100-1107
    • /
    • 2005
  • The failure of blades frequently happened in the 300 MW LP(low pressure) turbine until now and they are maintaining the blades periodically during outage. So the blade-disk system is analysed by FEM in order to identify the main cause of failure of blade row. It is found that the stress of root's hole is highest in comparison with other parts from the result of the steady stress analysis. Also, the two dangerous frequencies which is related to the resonance condition are found in the interference diagram. One is 1,316 Hz. The other is 2,981 Hz which is related to the 1 nozzle passing frequency. The dynamic stress analysis is performed to identify more accurate root cause for failure of blade row It is confirmed that the dynamic stress of the former is higher than one of the latter From these results, it is concluded that the former has deeply something to do with the failure of blades more than the tatter. Based on versatile investigation and deliberation, the change of blade's grouping is determined to avoid the resonance condition with the operating speed. After the blade grouping is changed, the former frequency vanish completely but the latter is still in existence in the interference diagram. Fortunately, It is confirmed that the dynamic stress of the new blade grouping is lower than one of the old blade grouping. 2 years has passed since modification and the LP turbine is operated well without failure so far.

저압 터빈용 Finger 형 블레이드의 공진 방지를 위한 개선 및 시험 (Modification and Testing to Prevent the Resonance in a Finger-type Low Pressure Turbine Blade)

  • 하현천;이동진;류석주;정희찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.612-617
    • /
    • 2000
  • This paper describes the experience gained from the treatments for prevention of blade failure occurred in the low-pressure turbine. Some cracks due to high cycle fatigue were found at the blades in low-pressure turbines after long time operation. Such failure was mainly caused by the resonance of the blade with the vane passing frequency excitation. If a natural frequency of the blade exists near the excitation frequency, a resonant vibration can occur and leads to a large amount of stress which may cause fatigue failures in turbine blades. To avoid the resonance of the blade, some modifications have been performed and full-scaled mockup testing has been done to confirm the verification for modification. Test result shows that enlarging the span cover is very useful to change the natural frequency of the grouped blades effectively.

  • PDF

A Study on Non Destructive Evaluation of the Steam Turbine L-0 Blades

  • Mizanur, Rahman Md.;Rezk, Osama;Ouma, Victor Otieno;Vaysidin, Saidov;Gomaa, M. Abdullatif;Jung, JaeCheon;Lee, YongKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.59-71
    • /
    • 2016
  • The Nuclear and Fossil Steam Turbines record a considerable number of failures annually. Some of these failures reported are as result of blade failure. The failure of the L-0 blade in a Steam Turbine is one of the most reported blade failure in Nuclear and Fossil steam turbines. This paper seeks to identify the best Non Destructive Evaluation (NDE) method or methods to be used in the steam turbine L-0 blades inspection process. The development of systems engineering processes presents an opportunity to apply NDE inspection to the L-0 blades. This process apply computer modelling of the L-0 using ANSYS and by simulating the stresses experienced by the L-0 blade during operation it is possible to identify the most susceptible areas for crack formation and growth. The results from these models compared to industry data for validation. The analysis of these results used to predict the most probable failure location and failure modes. Therefore NDE inspection can be applied to these areas with greater degree of accuracy. This would be beneficial in the increasing the accuracy in the detection of cracks and hence save inspection time and the overall inspection cost. Furthermore, not only the location for crack formation and NDE inspection determined but also best the NDE inspection technique/techniques to be applied appropriately on the L-0 blade are prescribed.

AFM과 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구 (A Study on Failure Analysis of Turbine Blade using AFM and FEM)

  • 최우성;이동우;홍순혁;조석수;주원식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.489-493
    • /
    • 2000
  • Turbine blade has trouble of cracking at root region. Fracture surface of blade root is surveyed by SEM and AFM to clear relation between fracture mechanical parameter and surface parameter (striation width and surface roughness). Service stress is predicted by maximum height roughness $R_{max}$, on fractured surface and stress analysis on turbine blade. It is to thought that turbine blade is fractured by abnormal condition such as incorrect fittings between pin and pin hole but isn't fractured by normal service conditions such as steam pressure, centrifugal force and torsional force.

  • PDF

2 MW급 풍력터빈 블레이드 설계 및 단방향 유체-구조연성해석 (Design of a 2MW Blade for Wind Turbine and Uni-Directional Fluid Structure Interaction Simulation)

  • 김범석;이강수;김만응
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.1007-1013
    • /
    • 2009
  • The purposes of this study are to evaluate the power performance through CFD analysis and structural integrity through uni-directional FSI analysis in aerodynamic design and structure design of wind turbine blade. The blade was designed to generate the power of 2MW under the rated wind speed of 11 m/s, consisting of NACA 6 series, DU series and FFA series airfoil. The inside section of the blade was designed into D-spar structure and circular stiffener was placed to reinforce the structural strength in the part of hub. CFD analysis with the application of transitional turbulence model was performed to evaluate the power performance of blade according to the change of TSR and 2.024MW resulted under the condition of rated wind speed. TSR of 9 produced the maximum power coefficient and in this case, Cp was 0.494. This study applied uni-directional FSI analysis for more precise evaluation of structural integrity of blade, and the results of fiber failure, inter fiber failure and eigenvalue buckling analysis were evaluated, respectively. For the evaluation, Puck's failure criteria was applied and the result showed that fiber failure and inter fiber failure did not occur under every possible condition of the analysis. As a result, power performance and structural integrity of 2 MW blade designed in this study turned out to satisfy the initial design goals.

X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구 (A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM)

  • 김성웅;홍순혁;전형용;조석수;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.258-265
    • /
    • 2001
  • Turbine blade is subject to force of three type ; torsional force by torsion-mount, centrifugal force by rotation of rotor and cyclic bending force by steam pressure. Cyclic bending force of them is main factor on fatigue fracture. In the X-ray diffraction method, the change in the values related to plastic deformation and residual stress near the fracture surface mat be determined, and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade parts was predicted. Failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

  • PDF