• Title/Summary/Keyword: turbine blade cooling

Search Result 86, Processing Time 0.03 seconds

Effects of Free-Stream Turbulence Intensity and Blowing Ratio on Film Cooling of Turbine Blade Leading Edge (자유유동 난류강도와 분사비가 터빈 블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, S.M.;Kim, Youn-J.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.746-751
    • /
    • 2001
  • We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was $7.1\times10^4$. Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio.

  • PDF

Shower-Head Film Cooling on the Leading Edge of a Turbine Blade: Measurements of Local Blowing Ratio and Flow Visualizations (터빈 블레이드 선단에서의 샤워헤드 막냉강 - 국소분사율 측정 및 유동의 가시화 -)

  • Jeong, Chul Hee;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.419-430
    • /
    • 1999
  • Measurements of local blowing ratio and ammonia-diazo flow visualizations have been conducted for a shower-head film cooling on a first-stage turbine stator. In this study, six rows of normal holes are drilled symmetrically on the semicircular leading edge of a simulated blunt body. The measurements show that for an average blowing ratio based on freestream velocity, M, of 0.5, local average mass flow rate through the first two rows of the holes is less than those through the second and third two rows of the holes, and the fraction of mass flow rate through the first two rows to total mass flow rate has a tendency to increase with the increment of M. The flow visualizations reveal that the injection through the first two row results in inferior film coverage even In the case of M = 0.5, meanwhile the row of holes situated at farther downstream location provides higher film-cooling performances for all tested M. This is because film-cooling effectiveness depends on local mainflow velocity at the hole location as well as the mass flow rate through each row.

Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling (분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, Yun-Je;Gwon, Dong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

The Characteristics of Film-Cooling Effectiveness on a Turbine-Blade-Shaped Surface (터빈 블레이드 형상 곡면에서의 막냉각 효율 특성)

  • Yun, Sun-Hyeon;Ryu, Won-Taek;Kim, Dong-Geon;Kim, Dae-Seong;Kim, Gwi-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.384-393
    • /
    • 2002
  • The effects of hole expansion angle and the arrangement of nozzles on a film cooling system for a turbine-blade-shaped surface were experimentally investigated. Liquid crystal with flue-temperature correlation and an image processing system were employed to evaluate surface temperature. Distributions of cooling effectiveness were then presented to figure out the change of heat transfer characteristics with different geometric conditions of cooling-holes. It was found thats the averaged cooling efficiency on the suction surface was maximum with 10 degree of the cooling hole expansion angle. It was also shown that the averaged cooling efficiency on the pressure surface and the averaged cooling efficiency for dual array case were not affected by the hole expansion angle.

Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage (회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향)

  • Lee, Se-Yeong;Lee, Dong-Ho;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.

Optimization of Fan-Shaped Hole for Gas Turbine Blade on Thin Wall (가스터빈 블레이드의 얇은 벽에서의 팬 형상 홀 최적화)

  • Hyun, Minjoo;Park, Hee Seung;Kim, Taehyun;Song, Ho Seop;Lee, Hee Jae;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.71-77
    • /
    • 2021
  • Several cooling techinques have been studied for protecting gas turbine blades from hot gas. In terms of film-cooling techniques, various shapes of film cooling holes have been studied including fan shaped holes, which are used on gas turbine blades. However, owing to increasing demands on smaller gas turbines, a research on film-cooling holes on thin walls is required. This study was conducted at blowing ratios of 1 and 2, using numerical analysis. Through the numerical analysis, the effect of geometrical parameters on the effectiveness of fan-shaped hole film cooling was studied. Moreover, optimization was performed on three geometrical parameters: metering length, lateral expansion angle and forward expansion angle. As a result, we realized that the optimal fan-shaped holes on each blowing ratio were found to have very similar geometry and cooling performance.

A Study of Film Cooling of a Cylindrical Leading Edge with Shaped Injection Holes (냉각홀 형상 변화에 따른 원형봉 선단의 막냉각 특성 연구)

  • Kim, S.M.;Kim, Youn J.;Cho, H.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.21-27
    • /
    • 2003
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of a turbine blade, cylindrical body model is used. Mainstream Reynolds number based on the cylinder diameter is $7.1{\times}10^4$. The effects of coolant flow rates are studied for blowing ratios of 0.7, 1.0, 1.3 and 1.7, respectively. The temperature distribution of the cylindrical model surface is visualized with infrared thermography (IRT). Results show that the film cooling performance could be significantly improved by the shaped injection holes. For higher blowing ratio, the spanwise-diffused injection holes are better due to the lower momentum flux away from the wall plane at the hole exit.

Effects of the Damaged Axial-flow Compressor Blade on the Gas Turbine Components (축류 압축기 블레이드 손상시 터빈부품에 미치는 영향)

  • Kang, M.S.;Yun, W.N.;Kim, K.Y.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.53-58
    • /
    • 2007
  • The ruptured blade which is rotating at high speed can damage severely the all stage compressor blades and the turbine components. If the shattered blades flow downstream inside the turbine parts, then the turbine blades and vanes can be damaged. The small parts of shattered blades which are flowed into the turbine parts pass through without any damages in the leading edge of the first stage stationary blades. Then they bump against the convex side of the leading edge of the first stage moving blades and the trailing edge of the first stage stationary blades repeatedly. The debris of shattered blades may plug the cooling holes in the turbine blades and vanes. The dent damage and the coating delamination could be also occurred by the debris of shattered blades flowed downstream inside the combustion liner and the transition piece. This paper analyzes the influence on the turbine components and the damage mechanism and characteristics in case of the damaged blade of the multiple-stage axial flow compressor.

  • PDF

Influence of Precooling Cooling Air on the Performance of a Gas Turbine Combined Cycle (냉각공기의 예냉각이 가스터빈 복합발전 성능에 미치는 영향)

  • Kwon, Ik-Hwan;Kang, Do-Won;Kang, Soo-Young;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.171-179
    • /
    • 2012
  • Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state-of-the-art F-class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off-design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.