DOI QR코드

DOI QR Code

Optimization of Fan-Shaped Hole for Gas Turbine Blade on Thin Wall

가스터빈 블레이드의 얇은 벽에서의 팬 형상 홀 최적화

  • Received : 2021.05.17
  • Accepted : 2021.07.08
  • Published : 2021.08.31

Abstract

Several cooling techinques have been studied for protecting gas turbine blades from hot gas. In terms of film-cooling techniques, various shapes of film cooling holes have been studied including fan shaped holes, which are used on gas turbine blades. However, owing to increasing demands on smaller gas turbines, a research on film-cooling holes on thin walls is required. This study was conducted at blowing ratios of 1 and 2, using numerical analysis. Through the numerical analysis, the effect of geometrical parameters on the effectiveness of fan-shaped hole film cooling was studied. Moreover, optimization was performed on three geometrical parameters: metering length, lateral expansion angle and forward expansion angle. As a result, we realized that the optimal fan-shaped holes on each blowing ratio were found to have very similar geometry and cooling performance.

가스터빈 블레이드를 고온의 주유동으로부터 보호하기 위해 다양한 냉각 기법이 연구되었고, 팬 형상 홀을 포함한 다양한 막냉각 홀 형상에 대해서도 연구가 수행되어왔다. 하지만, 소형 가스터빈에 대한 수요가 증가함에 따라 얇은 벽에 적용할 수 있는 막냉각 홀에 대한 연구가 필요하다. 이에 따라 본 연구에서는 수치해석을 통하여 분사율 1과 2에서 팬 형상 홀의 형상 변수의 영향을 연구하였다. 또한, 원형부 길이와 전방향 및 횡방향 확장각, 세 가지 변수에 대하여 최적화를 수행하였다. 각 분사율에서 최적화된 두 형상은 유사한 형상 변수와 냉각 성능을 갖는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 2019년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구입니다(20193310100030). 또한, 2020년도 산업통상부의 재원으로 수행한 한국에너지기술평가원(KETEP)의 인력양성사업(No. 20204030200110) 일환으로 수행되었으며, 이에 감사드립니다.

References

  1. Cho, H.H., Rhee, D.H. and Kim, B.G., "Enhancement of Film Cooling Performance Using a Shaped Film Cooling Hole with Compound angle Injection," JSME International Journal Series B Fluids and Thermal Engineering, Vol. 44, No. 1, pp. 99-110, 2001. https://doi.org/10.1299/jsmeb.44.99
  2. Schroeder, R.P. and Thole, K.A., "Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole," Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, Vol. 45721, p. V05BT13A036. 2014.
  3. Saumweber, C. and Schulz, A., "Effect of Geometry Variations on the Cooling Performance of Fan-shaped Cooling Holes," Turbo Expo: Power for Land, Sea, and Air, Vol. 43147, pp. 905-919, 2008.
  4. Chen, A.F., Li, S.J. and Han, J.C., "Film cooling with forward and backward injection for cylindrical and fan-shaped holes using PSP measurement technique," American Society of Mechanical Engineers, Vol. 45721, p. V05BT13A042. 2014.
  5. Li, W., Li, X., Ren, J. and Jiang, H., "A Novel Method for Designing Fan-Shaped Holes With Short Length-to-Diameter Ratio in Producing High Film Cooling Performance for Thin-Wall Turbine Airfoil," Journal of Turbomachinery, Vol. 140, No. 9, 2018.
  6. Lee, K.D., Husain, A. and Kim, K.Y., "Multi-objective Optimization of a Laidback Fan Shaped Film-cooling Hole Using Evolutionary Algorithm," International Journal of Fluid Machinery and Systems, Vol. 3, No. 2, pp. 150-159, 2010. https://doi.org/10.5293/IJFMS.2010.3.2.150
  7. Wang, C.H., Zhang, J.Z. and Zhou, J.H., "Data Mining Optimization of Laidback Fan-shaped Hole to Improve Film Cooling Performance," Journal of Central South University, Vol. 24, No. 5, pp. 1183-1189, 2017. https://doi.org/10.1007/s11771-017-3521-x
  8. Park, S.H., Kang, Y.J., Seo, H.J., Kwak, J.S. and Kang, Y.S., "Experimental Optimization of a Fan-shaped Film Cooling Hole with 30 Degrees-injection Angle and 6-hole Length-to-diameter Ratio," International Journal of Heat and Mass Transfer, Vol. 144, pp. 118652, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118652
  9. Park, S., Jung, E.Y., Kim, S.H., Sohn, H.S. and Cho, H.H., "Enhancement of Film Cooling Effectiveness Using Backward Injection Holes," International Journal of Thermal Sciences, Vol. 110, pp. 314-324, 2016. https://doi.org/10.1016/j.ijthermalsci.2016.08.001
  10. ANSYS CFX V17.2, "ANSYS CFX Theory Guide 17.2," ANSYS, Inc., Canonsburg, P.A., U.S.A., 2015.
  11. Shields, M.D. and Zhang, J., "The Generalization of Latin Hypercube Sampling," Reliability Engineering & System Safety, Vol. 148, pp. 96-108, 2016. https://doi.org/10.1016/j.ress.2015.12.002
  12. Martin, J.D. and Simpson, T.W., "Use of Kriging Models to Approximate Deterministic Computer Models," AIAA Journal, Vol. 43, No. 4, pp. 853-863, 2005. https://doi.org/10.2514/1.8650