• Title/Summary/Keyword: turbidity removal

Search Result 329, Processing Time 0.027 seconds

A study on characteristic of the smoke removal of an air cleaner by monitoring of turbidity with laser (레이저 혼탁도 모니터링을 통한 공기청정 특성에 관한 연구)

  • Kim, Su-Weon;Park, Jong-Woong;Joung, Jong-Han;Chung, Hyun-Ju;Lee, Yu-Soo;Jeon, Jin-An;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1698-1700
    • /
    • 2003
  • The electrostatic precipitator(ESP) is a device for removing particulate pollutants in the form of either a solid (dust or fumes) or a liquid (mist) from a gas using an electrostatic force, Electrostatic precipitation has been widely used for cleaning gas from almost all industrial processes with a medium to large gas volume(>2,000 $m^3/min$), including utility boilers, blast furnaces, and cement kilns. ESP is also in wide use for air cleaning in living environments (home, offices, hospitals, etc.) ESP has large advantages over other particulate control device : a low operating cost, a high collection performance, and ease of maintenance. The purpose of this study is to investigate the characteristics of the smoke removal of an air cleaner by adjusting variable frequency and monitoring of turbidity three results of this research are as follows ;the first is the best efficient switching frequency which is 60Hz, the second is the smoke removal time which is obtained to 9 seconds, third is that the best efficient firing angle is $90^{\circ}$ As a result, the switching trigger frequency and SCR gate firing angle is very important factor to predict the best collection efficiency.

  • PDF

A Study of Filtralite Media Applicability for Development F/A Process of Membrane Filtration Pre-treatment Process in the Water Purification Plant (정수장에서 막여과 전처리용 F/A 공정 개발을 위한 Filtralite 여재의 적용성 연구)

  • Kim, JUN-Hyun;Jun, Yong-sung;Kwak, Young-ju;Jang, Jung Woo
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.503-514
    • /
    • 2015
  • In this study, water purification system without coagulant was consisted of F/A and membrane to produce purified water which only uses physical treatment without coagulant. Because the use of coagulant has a possibility remaining of hazardous aluminum with our health. Especially, the Filtralite was reviewed the possibility to remove turbidity and organic material. It was found that the turbidity removal rate of Filtralite was 83~84%. It show that Filtralite has similar efficiency to sand-filter. But Filtralite has higher 50% removal rate of organic material than sand-filter due to well-developed pore on the surface of it. So, Filtralite could be used to substitute the sand-filter for the F/A process due to higher removal rate. And also coupled with activated carbon in F/A process, TMP was increased by TOC value. To prevent increasing TMP, media that has outstanding organic adsorption ability should be used.

A Study on the Applicability of Torrefied Wood Flour Natural Material Based Coagulant to Removal of Dissolved Organic Matter and Turbidity (용존성 유기물질 및 탁도 제거를 위한 반탄화목분 천연재료 혼합응집제의 적용성에 관한 연구)

  • PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.472-487
    • /
    • 2020
  • With the emergence of abnormal climate due to the rapid industrialization, the importance of water quality management and management costs are increasing every year. In Korea, for the management of total phosphorus and total nitrogen, the major materials causing the water quality pollution, coagulants are injected in sewage treatment plants to process organic compounds. However, if the coagulant is injected in an excessive amount to PAC (Poly Aluminium Chloride), a secondary pollution problem might occur. As such, a study on the applicability of natural material-based coagulant is being conducted in Korea. Thus, this study aimed to evaluate the applicability of a mixed coagulant developed by analyzing water quality pollutants T-P, T-N as well as their turbidity, in order to derive the optimum mixing ratio between PAC and torrefied wood flour for the primary settling pond effluent. Under the condition where the content of PAC (10%) and torrefied wood flour is 1%, T-P showed the maximum removal efficiency of 92%, and T-N showed approximately 22%. This indicates that removal of T-N which includes numerous positively charged organic compounds that are equivalent to mixed coagulant is not well accomplished. Turbidity showed the removal efficiency of approximately 91%. As such, 1% of torrefied wood flour was determined to be the optimum addition. As a result of analyzing the removal efficiency for organic compounds by reducing PAC concentration to 7%, T-P showed a high maximum removal efficiency of 91%, T-N showed 32%, and turbidity showed the maximum of 90%. In addition, a coagulation process is performed by using the mixed coagulant based on 1% content of torrefied wood flour produced in this study by performing a coagulation performance comparative experiment with PAC (10%). As a result, PAC concentration was reduced to 30-50%, a similar performance with other coagulants in market was secured, PAC injection amount was reduced that an economic effect can be achieved, and it is considered to perform a stable water treatment that reduces the secondary pollution problem.

Improvement of biosand filter embedded with ferric-manganese-silica oxide adsorbent to remove arsenic in the developing countries (개발도상국에서 Hybrid Ferric-Manganese-Silica Oxide를 적용한 비소 제거용 정수 BSFilter 적정기술개발)

  • Jeong, Ingyu;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.641-648
    • /
    • 2013
  • Arsenic (As) contamination in drinking water is severe problem for about 100 million people who live in Bangladesh, Cambodia, Nepal, India, Vietnam, Myanmar, Mongolia, and Ethiopia etc. Chronic doses cause skin cancer, blackfoot disease, and cardiac damage. Even though the biosand filter (BSF) is popular in many developing countries, it could not remove effectively hazardous ions as As. Adsorbent is effective and feasible to reduce As. In this study the improved biosand filter (iBSF) was embedded with adsorbent, was tested to evaluate As removal as well as organic removal. In 20 days removal of turbidity, bacteria, and $UV_{254}$ have shown 60-95 % removal. Arsenic was removed more than 99.9 % in the columns embedded with silica oxides of ferric manganese ($FM{\alpha}$) while 5.8 ~ 38.3 % in columns without $FM{\alpha}$. Isotherm test showed that average amount of the adsorbed arsenic on the oxides was 0.56 mg/G.

Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants (낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용)

  • Moon, Sin-Deok;Son, Hee-Jong;Yeom, Hoon-Sik;Choi, Jin-Taek;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.590-596
    • /
    • 2012
  • Enhanced coagulation is best available technologies to treat NOM in water to produce clean drinking water. In this research, the comparison experiments between conventional coagulation (CC) and enhanced coagulation (EC) using 4 type coagulants i.e., ferric chloride, aluminium sulphate (alum), poly aluminium sulphate organic magnesium (PSOM) and poly aluminium chloride (PACl) were performed in terms of surrogate parameters such as dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), haloacetic acid formation potential (HAAFP) and zeta potential variation in order to find out the most effective coagulant and conditions to fit Nakdong River water. When applied to EC process, the turbidity removal efficiency did not increased gradually compared to the CC process when adding coagulants. Furthermore, the removal efficiency of turbidity became decreased much more as coagulants were added increasingly whereas the removal efficiency of DOC, THMFP and HAAFP became increased by 13~18%, 9~18% and 9~18% respectively compared to the CC process. The characteristics of turbidity removal showed relatively high removal efficiency considering the pH variation in entire pH range when using $FeCl_3$ and PACl. Additionally, in case of alum and PSOM steady removal efficiency was shown between pH 5 and pH 8. In terms of DOC surrogate the coagulants including 4 type coagulants indicated high removal efficiency between pH 5 and pH 7. The removal efficiency of dissolved organic matter (DOM) in EC between less than 1 kDa and more than 10 kDa augmented by 11~21% and 16% respectively compared to the CC process. The removal efficiency of hydrophobic and hydrophilic organic matter proved to be increased by 27~38% and 11~15% respectively. In conclusion, the most effective coagulant relating to EC for Nakdong River water was proved to be $FeCl_3$ followed by PSOM, PAC and alum in order.

Inactivation Effect of Cryptosporidium by Ozone and UV (Ozone과 UV를 이용한 Cryptosporidium의 불활성화 효과)

  • Kim, Yun-Hee;Lee, Chul-Hee;Lee, Shun-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.31-39
    • /
    • 2007
  • The objective of this study was to investigate the inactivation characteristics of Cryptosporidium oocysts by ozone and UV and to suggest the better, disinfection method. The inactivation CT value of 1 log(90%) and 2 log(99%) in of one disinfection, which is an index of disinfection for inactivation effect by ozone, were respectively 5.77 $mg{\cdot}min/L$ and 21.30 $mg{\cdot}min/L$. The inactivation in UV disinfection was not affected by pHs(5, 7 and 9), low turbidity(5 and below NTU) and UV intensity(0.2 and 0.6 $mWs/cm^2$) but obviously decreased at high turbidity over 20 NTU. Therefore UV disinfection capacity can be obtained when a good turbidity removal in drinking water treatment process is achieved. And if oocysts is exposed by high UV over 0.6 mWs/cm2 during enough time, the better inactivation effect will be obtained.

New Technologies for Enhancing Particles Separation Efficiency in Coagulation and Filtration (입자분리효율을 높이기 위한 새로운 기술)

  • Kunio, Ebie;Jang, Il-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.254-269
    • /
    • 2004
  • Polysilicato-iron coagulant (PSI) is receiving attention in Japan as a substitute for aluminum-based coagulants. In the first part of this article, coagulation, sedimentation and filtration experiments were carried out using kaolin clay particles as the turbidizing material and four types of PSI with various molar ratios of polysilicic acid to ferric chloride (Si/Fe ratio). Results demonstrate that use of a PSI with a high Si/Fe ratio can cause a more dramatic decrease in treated water turbidity but a higher suction time ratio (STR) than when PACl is used. However, optimization by increasing the rapid agitation strength GR is found to greatly improve the STR. In addition, the series of filtration experiments verified that optimization of GR is greatly effective in controlling rapid increases in filter head loss, and also formation of a thin aging layer in the upper part of the filter bed by slow-start filtration is effective in improving filtered water turbidity over the entire filtration process. The second part of this article describes two innovative filtration techniques to increase the particle separation efficiency; (1) coagulant-coated filter medium by enhancing the electrical potential of the surface of the filter medium, and (2) coagulant dosing in influent by controlling the electrical potential of particles entering the filter layer. From the results of the various filtration experiments using a pilot plant, these two techniques were found to be very effective to reduce the effluent water turbidity from the start to the end of a filter run. Moreover, in the filtration experiments using these two methods simultaneously, higher removal efficiency of approximately 3-log (99.7%) was realized, resulting that the finished water turbidity was accordingly reduced to 0.004mg/L.

Effect of Drinking Water Treatment by DOF(Dissolved Ozone Flotation) System (DOF 공정에 의한 정수처리 효과)

  • Lee, Byoung-Ho;Song, Won-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.743-750
    • /
    • 2008
  • In water treatment plant the Dissolved Ozone Flotation(DOF) System may be employed because this system has various abilities, such that it can remove SS using microbubbles, and it can exert strong oxidation power in removing taste and odor, color, and microbial agents. In order to investigate effectiveness of the DOF system in water treatment, removal characteristics of various water quality parameters were observed depending on the different levels of ozone concentrations. Removal efficiencies of water quality parameters in DOF system were compared with those in DAF(Dissolved Air Flotation) system and in CGS(Conventional Gravity Settling) system. Optimum ozone dose obtained in the pilot experiments was 2.7 mg/L. With increasing ozone dose higher than 2.7 mg/L, removal rates of turbidity, KMnO$_4$ consumption, UV$_{254}$ absorbance, and TOC were reversely lowered. High concentration of ozone dissociate organic matter in water, so that increasing dissolved organic level in effluent. Removal rates of water quality parameters at optimum ozone dose were obtained, such that removal rates of turbidity, KMnO$_4$ consumption, TOC, and UV$_{254}$ asorbance were 88.9%, 62.9%, 47%, and 77.3% respectively. Removal rate of THMFP was 51.6%. For all the parameters listed above, the DOF system was more effective than the DAF system or the CGS system. It is found that the DOF system may be used in advanced water treatment not only because the DOF system is more efficient in removing water quality parameters than the existing systems, but because the DOF system is also required smaller area than the CGS system for the treatment plant.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.

Application of Rare Earth Compounds for the Treatment of Phosphate and Fluoride in Wastewater (인산염 및 불소폐수 처리제로서의 희토류 화합물 적용에 관한 연구)

  • Kim, Jin-Wha;Shin, Sung-Hye;Song, Hye-Won;Kim, Dong-Su;Woo, Sang-Mo;Kwon, Young-Shik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1127-1137
    • /
    • 2000
  • Applications of lanthanum ion and crude rare earth chloride to the phosphate wastewater and fluorine wastewater, respectively, as treatment agents were studied. For the investigation of phosphate removal characteristics according to the amount of lanthanum ion, initial phosphate content was decreased by about 50% when molar ratio of [$La^{3+}$]:[$PO_4{^{3-}}-P$] was 0.25 and nearly all of phosphate was removed when the molar ratio of [$La^{3+}$]:[$PO_4{^{3-}}-P$] to be doubled. The removal of phosphate by $La^{3+}$ appeared to reach equilibrium state rapidly, and it was exothermic reaction since the removed amount of phosphate was diminished somewhat when the reaction temperature was increased. The zeta potential of combined particulate compound of lanthanum ion and phosphate was located for its isoelectric point at pH 5.5 and the turbidity of treated wastewater was found to vary according to the pH in a similar manner as the absolute value of zeta potential of the combined particulate compound did. For the treatment of fluorine wastewater by crude rare earth chloride, the remaining fluorine content after treatment decreased as the dosage of crude rare earth chloride increased. Whereas, the turbidity of treated wastewater and the amount of sludge generated were shown to increase as more crude rare earth chloride was added. The remaining fluorine content and the turbidity of treated wastewater were decreased and the amount of sludge generated was observed to increase according the increase of coagulant dosage under the condition of constant input of crude rare earth chloride.

  • PDF