• 제목/요약/키워드: turbidity removal

검색결과 329건 처리시간 0.024초

DAF(Dissolved Air Flotation)를 이용한 제지폐수의 COD, SS 및 탁도 제거 (COD, SS and Turbidity Removal of Paper Wastewater Using DAE(Dissolved Air Flotation))

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제31권4호
    • /
    • pp.246-253
    • /
    • 2005
  • The supernatant treatment of recovery process of raw materials of paper plant was studied using DAF (Dissolved Air Flotation) system. We investigated the removal efficiency (COD, SS and turbidity) of the DAF process. The effects of parameters such as A/S ratio, pressure, flotation conditions, coagulant concentration, mixing conditions, size and ratio of packing and nozzle type were examined. The results showed that the optimum A/S ratio and pressure were 0.058 and 4.5-5 atm, respectively. Injection times of pressurized water around 30 s and flotation times around 10 min appeared to be optimal for the DAF operation. Anion polymer addition improved the removal of COD, SS and turbidity. The smaller size and the more packing ratio were enhanced the removal efficiencies. The order of performance of nozzle was full cone > flat > assemble type.

공극제어형 섬유사 여과기를 이용한 복류수의 탁도 제거효율 평가 (Evaluation of Turbidity Removal Efficiency on under Flow Water by Pore Controllable Fiber Filtration)

  • 김정현;배철호;김충환;박노석;이선주;안효원;허현철
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.135-143
    • /
    • 2005
  • It was evaluated that the effect of turbidity removal by Pore Controllable Fiber Filter(PCF) installed in NS(Naksang) small water treatmant plant(system) using under flow water as raw water in the study. The results of the study are as the followings. Firstly, the removal efficiency of turbidity by PCF without coagulation(in operation mode not using coagulants) was mostly below 20 percent. On the other hand, when operation using proper coagulants, that of turbidity was mostly over 80 percent. Secondly, slow sand filtration after PCF, total turbidity removal efficiency of final treated water was 84.3 percent, and the contribution by PCF was 57.1 percent and that of slow sand filtration was 27.7 percent. Therefore the introduction of PCF as pre-treatment process would be helpful to reduce the loading of high turbidity of slow sand filtration. Thirdly, the results of particle counter measurements showed that when operated PCF with coagulants, fine flocs captured or adsorbed at the pore of PCF were flow out into the effluents from 120 minutes after backwashing because of the increase of headloss of PCF. Therefore the decision of backwashing time should made consideration into the outflow of fine flocs from PCF. Fourth, coagulant dosages on PCF at the same turbidity was largely variable because of the effect of the raw water characteristics and the turbidity increase velocity at rainy days, therefore flexible coagulant dosages should be considered rather than fixed coagulant dosage by the influent jar-test result.

최적 응집 효율을 위한 Al계 액상 응집제의 희석 효과 (The Predilution Effect of Al-based Liquid Coagulants for the Optimal Efficacy)

  • 허재용;이상화
    • 공업화학
    • /
    • 제17권1호
    • /
    • pp.37-43
    • /
    • 2006
  • 원수의 pH, 응집제의 주입량, 희석배수에 따라 알루미늄계 응집제(Alum, PACS, PACC)의 원수내 인과 탁질의 제거효과를 고찰하였다. 저탁도(20 NUT) 및 적정 pH 6~9하에서 알류미늄계 응집제간의 탁도 제거율의 차이는 뚜렷하게 나타나지 않았다. 그러나 인의 제거율에 있어서는 20~40 ppm의 주입량에 대해서 응집제의 염기도가 증가할수록 감소함을 알 수 있었다. Alum (0%)>PACS (45~50%)>PACC (70%), 고탁도(100 NUT) 하에서는 고분자 응집제인 PACS와 PACC의 응집성능이 단분자 응집제인 Alum보다 뛰어남을 알 수 있었다. 20 NUT의 저탁도에서 직접 주입한 경우와 비교해서, 500~2000배로 희석한 Alum의 경우에는 응집효율의 감소가 나타났으나 희석된 응집제의 체류시간이 증가함에 따라 탁도 및 인의 제거율이 증가하는 경향을 나타내주었다. 반면에 희석된 PACC의 경우에는 분산도의 증가에 기인한 응집성능의 향상이 나타났으나 희석된 응집제의 체류시간이 증가함에 따라 응집효율의 감소가 나타났다. 100 NTU의 고탁도 조건하에서는 Alum과 PACC를 희석하여 주입시 모두 응집성능이 향상됨을 알 수 있었다.

Biofilter pretreatment for the control of microfiltration membrane fouling

  • Park, Jae-Hyung;Satoshi Takizawa;Hiroyuki Katayama;Shinichiro Ohgaki
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 춘계 총회 및 학술발표회
    • /
    • pp.31-38
    • /
    • 2003
  • A pilot scale biofilter pretreatment-microfiltration system (BF-MF) was operated to investigate the effect of biofilter treatment in fouling reduction of microfiltration. Biofiltration was expected to reduce the membrane fouling by removal of turbidity and metal oxides. The hollow-fiber MF module with a nominal pore size of 0.1$\mu$m and a surface area of 8m$^2$ was submerged in a filtration tank and microfiltration was operated at a constant flux of 0.5 m/d. Biofiltration using polypropylene pellets was performed at a high filtration velocity of 320 m/d. Two experimental setups composed of MF and BF/MF, i.e., without and with biofilter pretreatment, were compared. Throughout the experimental period of 9 months, biofilter pretreatment was effective to reduce the membrane fouling, which was proved by the result of time variations of trans-membrane pressure and backwash conditions. The turbidity removal rate by biofiltration varied between 40% to 80% due to the periodic washing for biofilter contactor and raw water turbidity. In addition to turbidity, metals, especially Mn, Fe and Al were removed effectively with average removal rates of 89.2%, 67.8% and 64.9%, respectively. Further analysis of foulants on the used membranes revealed that turbidity and metal removal by biofiltration was the major effect of biofiltration pretreatment against microfiltration fouling.

  • PDF

2단 생물막여과 탈질시스템에서 지하수의 질산성질소 및 입자제거특성 (Removal of Nitrate and Particulate from Groundwater with Two stage Biofilter system)

  • 이무재;박상민;전항배;김공수;임정수
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.669-675
    • /
    • 2005
  • Biological nitrate removal from groundwater was investigated in the biofilters packed with both gravel/sand and plastic media. Removal of particles and turbidity were also investigated in the 2-stage biofilter system consisted of biofilter and subsequent sand filter. In the single biofilter packed with gravel and sand, nitrate removal efficiency was dropped with the increase of filtration velocity and furthermore, nitrite concentration increased up to 3.2 mg-N/L at 60 m/day. Denitrification rate at the bottom layer below 25 cm was faster 8 times than upper layer in the up-flow biofilter. Nitrite build-up, due to the deficiency of organic electron donors, occurred at the upper layer of bed. Besides DO concentration and organic carbon, contact time in media was the main factor for nitrate removal in a biofilter. The most of the effluent particles from biofilter was in the range from 0.5 to $2.0{\mu}m$, which resulted in high turbidity of 1.8 NTU. However, sand filter followed by biofilter efficiently performed the removal of particles and turbidity, which could reduce the turbidity of final filtrate below 0.5 NTU. Influent nitrate was removed completely in the 2-stage biofilter and no nitrite was detected.

정수처리에서 전기응집과 화학응집의 처리효율 비교 (Comparison of Electrocoagulation and Chemical Coagulation in Removal on Water Treatment)

  • 한무영;송재민;박상철
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.689-695
    • /
    • 2004
  • Electrocoagulation has been suggested as a promising alternative to conventional coagulation. The process is characterized by reduced sludge production, no requirement for chemical use, and ease of operation. However, this coagulation has scarcely been studied in water purifying process. This study was performed several batch experiments to compare turbidity removal between electrocoagulation and chemical coagulation. In addition, characteristics of floe were evaluated with zeta potential and particle size distributions. Electrocoagulation showed a relatively higher removal of turbidity (approximately 5%) with the same aluminum amount than conventional chemical coagulation. In addition, turbidity removal by electrocoagulation was less sensitive to pH and was greater for more extensive pH range than chemical coagulation. The results of zeta potential and floc size distributions illustrated that electrocoagulation provided the preferable conditions for coagulation such as zeta potential close to zero millivolt and increased portions of particles in the range of 40 and $100{\mu}m$.

완속여과 공정에서 전처리 공정 도입에 따른 입자제거 효율평가 (Evaluation of particulate removal in slow sand filtration processes)

  • 김성수;배철호;박노석;강석형
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.461-466
    • /
    • 2008
  • Because of their simplicity, efficiency, and economy, slow sand filters are appropriate means of water treatment for small water systems. In this study, the effect of filtration velocity and dirty skin (Schmutzdecke) was evaluated on the performance of turbidity removal. Also, removal characteristics of particulate were investigated in the case of the usage of non-woven fabric on the surface of sand and the application of PCF as pretreatment process. Comparative column tests were carried out for the various operation condition. From the result of column tests, filtration velocity had little effect on the turbidity removal rate. The formation of algal biofilm on the surface of media is helpful in turbidity removal, while non-woven fabric is not as effective as expected. The relative contribution of biomass and accumulated particulates to head loss development in slow sand filters requires further study.

원수 수질특성과 응집제 염기도에 따른 응집 pH 및 주입량의 영향 (The Effects of pH and Dosages According to Qualities of Raw Waters and Basicity of Coagulants)

  • 박노백;이범;전동걸;이영주;전항배
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.581-593
    • /
    • 2010
  • The objectives of this study were to investigate the effects of raw water pH and basicity of coagulants on turbidity removal with several raw waters having different level of turbidity, alkalinity and pH. Raw waters were sampled from M, S and B water treatment plants(WTP) located at Miryang, Nakdong, Han river, respectively. Six coagulants which have different levels of basicity and aluminum contents were used for this evaluation. High basicity of the coagulant helped to properly control coagulation processes for treating turbid and low alkali raw water. It was difficult for operators to determine optimum coagulant dose for high basicity coagulants, since residual turbidity tended to decrease continuously as coagulant dose increased. Turbidity removal efficiencies with high basicity coagulants(E and F) were higher than the other coagulants at ambient pH for the M WTP. Turbidity removal efficiencies, however, at adjusted pH 7.0 showed similar among six coagulants. Residual turbidity kept low at excess dosages with high basicity coagulants. Optimum coagulant dosages at adjusted pH 7.0 showed higher than those at ambient pH in M WTP. On the contrary in B WTP, optimum coagulant dosage at ambient pH were higher than that at adjusted pH 7.0.

메시형 알루미늄 전극을 이용한 전기응집/부상 공정에서 Kaoline의 탁도 제거 (Turbidity Removal of Kaolin in an Electrocoagulation/Flotation Process Using a Mesh-type Aluminum Electrode)

  • 정창;김동석;박영식
    • 한국환경과학회지
    • /
    • 제26권5호
    • /
    • pp.563-572
    • /
    • 2017
  • The Electrocoagulation-Flotation (ECF) process has great potential in wastewater treatment. ECF technology is effective in the removal of colloidal particles, oil-water emulsion, organic pollutants such as microalgae, and heavy metals. Numerous studies have been conducted on ECF; however, many of them used a conventional plate-type aluminum anode. In this study, we determined the effect of changing operational parameters such as power supply time, applied current, NaCl concentration, and pH on the turbidity removal efficiency of kaoline. We also determined the effects of different electrolyte types (NaCl, $MgSO_4$, $CaCl_2$, $Na_2SO_4$, and tap water), as well as the differences caused by using a plate-type and mesh-type aluminum anode, on the turbidity removal efficiency. The results showed that the optimal values of ECF time, applied current, NaCl concentration, and pH were 5 min, 0.35 A, 0.4 g/L NaCl in distilled water, and pH 7, respectively. The results also revealed that the turbidity removal efficiency of kaoline in different electrolytes decreased in the following sequence, given the same conductivity: tap water > $CaCl_2$ > $MgSO_4$ > NaCl > $Na_2SO_4$. The turbidity removal efficiency of the mesh-type aluminum anode was significantly greater than the plate-type aluminum anode.

정수처리 공정에서 Cryptosporidium Tracer의 제거효율 (Removal Efficiency of Cryptosporidium Tracer in Drinking Water Treatment Process)

  • 이순화;김윤희
    • 대한환경공학회지
    • /
    • 제28권12호
    • /
    • pp.1304-1309
    • /
    • 2006
  • 정수처리 과정에서 Cryptosporidium과 유사한 특성을 가지고 있는 C. tracer를 이용하여 공정별 제거효율을 조사하였다. PACI(Poly aluminium chloride, $Al_2O_3$(10%)) 주입량이 10 mg/L일 때 C. tracer는 97.16%로 가장 높은 제거율을 보였으며, 탁도 제거율과 SS 제거율이 높을수록 C. tracer 응집 효율이 높았다. 원수의 pH가 높을수록 C. tracer 제거율이 증가 하였으며 응집 침전 후의 유출수 탁도와 C. tracer 제거율과의 상관성이 $R^2=0.9506$로 높게 나타나 응집 침전 후의 유출수 탁도로 Cryptosporidium 제거 효율을 평가할 수 있음을 알 수 있었다. 또한 여과 실험에서는 유입 탁도에 따른 C. tracer 제거율은 $94.00{\sim}95.83%$ 범위였으며 유출수 탁도와 C. tracer 제거율과의 상관성은 $R^2=0.8704$였다. 최적 응집 조건 하에서 여과수 탁도가 양호할 경우, 예상되는 Cryptosporidium의 제거율은 응집 침전의 경우 1.55 log(97.16%), 급속모래여과의 경우 1.38 log(95.83%), 응집 침전+급속모래여과의 경우 2.31 log(99.51%)로 나타났다.