• Title/Summary/Keyword: turbid sea water

Search Result 41, Processing Time 0.032 seconds

Atmospheric correction by Spectral Shape Matching Method (SSMM): Accounting for horizontal inhomogeneity of the atmosphere

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.341-343
    • /
    • 2006
  • The current spectral shape matching method (SSMM), developed by Ahn and Shanmugam (2004), relies on the assumption that the path radiance resulting from scattered photons due to air molecules and aerosols and possibly direct-reflected light from the air-sea interface is spatially homogeneous over the sub-scene of interest, enabling the retrieval of water-leaving radiances ($L_w$) from the satellite ocean color image data. This assumption remains valid for the clear atmospheric conditions, but when the distribution of aerosol loadings varies dramatically the above postulation of spatial homogeneity will be violated. In this study, we present the second version of SSMM which will take into account the horizontal variations of aerosol loading in the correction of atmospheric effects in SeaWiFS ocean color image data. The new version includes models for the correction of the effects of aerosols and Raleigh particles and a method fur computation of diffuse transmittance ($t_{os}$) as similar to SeaWiFS. We tested this method over the different optical environments and compared its effectiveness with the results of standard atmospheric correction (SAC) algorithm (Gordon and Wang, 1994) and those from in-situ observations. Findings revealed that the SAC algorithm appeared to distort the spectral shape of water-leaving radiance spectra in suspended sediments (SS) and algal bloom dominated-areas and frequently yielded underestimated or often negative values in the lower green and blue part of the electromagnetic spectrum. Retrieval of water-leaving radiances in coastal waters with very high sediments, for instance = > 8g $m^{-3}$, was not possible with the SAC algorithm. As the current SAC algorithm does not include models for the Asian aerosols, the water-leaving radiances over the aerosol-dominated areas could not be retrieved from the image and large errors often resulted from an inappropriate extrapolation of the estimated aerosol radiance from two IR bands to visible spectrum. In contrast to the above results, the new SSMM enabled accurate retrieval of water-leaving radiances in a various range of turbid waters with SS concentrations from 1 to 100 g $m^{-3}$ that closely matched with those from the in-situ observations. Regardless of the spectral band, the RMS error deviation was minimum of 0.003 and maximum of 0.46, in contrast with those of 0.26 and 0.81, respectively, for SAC algorithm. The new SSMM also remove all aerosol effects excluding areas for which the signal-to-noise ratio is much lower than the water signal.

  • PDF

A Comparative Study for Red Tide Detection Methods Using GOCI and MODIS

  • Oh, Seung-Yeol;Jang, Seon-Woong;Park, Won-Gyu;Lee, Jun-Ho;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.331-335
    • /
    • 2013
  • This study detected red tide areas using the existing Moderate-Resolution Imaging Spectroradiometer(MODIS) and Geostationary Ocean Color Imager(GOCI), and then compared the results between results of two sensors. The coasts of Jeollanam-do in the South Sea of Korea were set as the study area based on the red tide data which occurred on Aug. 26th, 2012. This study compared the results of sensors to detect red tides by using a satellite. In the results of analyzing MODIS by limiting it as chlorophyll concentration and the sea surface temperature which is considered to have red tides by the existing researches, it was possible to delete considerable amount of errors compared to the case of detecting red tides by using only chlorophyll while still there were differences from the range of red tides actually observed. In the results of GOCI by using empirical algorithm for detecting red tides, currently used by Korea Institute of Ocean Science & Technology(KIOST), it was possible to obtain more detailed results than MODIS. However, there was an area misjudged as red tides due to the influence of clouds. Also both MODIS and GOCI extracted red tides were not actually occurring, which might be because they were not able to perfectly distinguish red tides from turbid water in coastal areas with high turbidity.

Seasonal Variation of Transparency in the Southeastern Yellow Sea (황해 남동해역 투명도의 계절 변화)

  • CHOI Yong-Kyu;KWON Jung-No
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.323-329
    • /
    • 1998
  • The data of Secchi disc observation collected during $1966\~1990$ were analyzed to investigate the seasonal variation of transparency in the southeastern Yellow Sea. The bimonthly distribution of mean transparency showed that the isolines of transparency were roughly parallel to the isobaths. The transparency was low (3 m in february and 8 m in August) if the shallow water less than 20 m depth in comparition to the higher values (10 m in february and 17 m in August) in the deeper water. The lowest transparency was found in winter. The transparency increased in spring and the highest transparency occurred in summer. The water becomes turbid in autumn. Suspended solid concentrations in winter are ranged from 28 to 130 $mg/{\ell}$, and from 8 to 60 $mg/{\ell}$ in summer. The seasonal variation of transparency seems to be mainly affected by resuspension of solid from the bottom. The amounts of suspended solid are large in winter due to the vertical convection by cooling effect and tubulence by the strong wind, and small in summer due to the strong stratification and weak wind.

  • PDF

Development $K_d({\lambda})$ and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea (황해 중부 연안 해역에서의 해색센서용 하향 확산 감쇠계수 및 수중시계 추정 알고리즘 개발)

  • Min, Jee-Eun;Ahn, Yu-Hwan;Lee, Kyu-Sung;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.311-321
    • /
    • 2007
  • The diffuse attenuation coefficient for down-welling irradiance $K_d({\lambda})$, which is the propagation of down-welling irradiance at wavelength ${\lambda}$ from surface to a depth (z) in the ocean, and underwater visibility are important optical parameters for ocean studies. There have been several studies on $K_d({\lambda})$ and underwater visibility around the world, but only a few studies have focused on these properties in the Korean sea. Therefore, in the present study, we studied $K_d({\lambda})$ and underwater visibility around the coastal area of the Yellow Sea, and developed $K_d({\lambda})$ and underwater visibility algorithms for ocean color satellite sensor. For this research we conducted a field campaign around the Yellow Sea from $19{\sim}22$ September, 2006 and there we obtained a set of ocean optical and environmental data. From these datasets the $K_d({\lambda})$ and underwater visibility algorithms were empirically derived and compared with the existing NASA SeaWiFS $K_d({\lambda})$ algorithm and NRL (Naval Research Laboratory) underwater visibility algorithm. Such comparisons over a turbid area showed small difference in the $K_d({\lambda})$ algorithm and constants of our result for underwater visibility algorithm showed slightly higher values.

Study on Salinity Distribution Change by the Fresh Water at the Bay in Flood (홍수기 하구로 유입된 담수로 인한 만에서의 염분분포 변화에 관한 연구)

  • Lee, Hyun-Seok;Ishikawa, Tadaharu;Kim, Young-Sung;Chae, Hyo-Sok
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • Any significant inflow of fresh water due to flood or snow melting can rapidly reduce salinity at the bay. In such a case, the habitat environment in the sea near river mouth can be partly destroyed. Therefore, research to understand the salinity distribution quantitatively at the bay for the utilization of natural environment and for the inhabitant conservation must be very important. In this study, the investigation on the relationship between satellite image and turbidity is carried out first, and then the salinity distribution at the bay using the relationship between turbidity and salinity is derived. The main results are as follows. First the reappearance ability of RGB bands respectively of the satellite image is investigated, and then it was confirmed that the combination of band2 and band3 expressed best the movement characteristics of turbid water at the bay is chopped up into 4 small areas. Second the turbidity of river mouth is estimated using the travel time from the upward monitoring station to the river mouth. Finally the satellite image is converted into the salinity distribution by the correlation of salinity and turbidity. It is confirmed that the salinity distributions obtained from above three investigation methods are quite reasonable and clear.

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.

Changes in The Sensitive Chemical Parameters of the Seawater in EEZ, Yellow Sea during and after the Sand Mining Operation (서해 EEZ 해역에서 바다모래 채굴에 민감한 해양수질인자들)

  • Yang, Jae-Sam;Jeong, Yong-Hoon;Ji, Kwang-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • Eight comprehensive oceanographic cruises on a squared $30{\times}30\;km$ area have been made to investigate the short and long-term impacts on the water qualities due to the sand mining operations at Exclusive Economic Zone (EEZ) in the central Yellow Sea from 2004 to 2007. The area was categorized to 'Sand Mining Zone', 'Potentially Affected Zone', and 'Reference Zone'. The investigation covered suspended solids, nutrients (nitrate, nitrite, ammonium, phosphate), and chlorophyll-a in seawater and several parameters such as water temperature, salinity, pH, and ORP. Additionally, several intensive water collections were made to trace the suspended solids and other parameters along the turbid water by sand mining activities. The comprehensive investigation showed that suspended solids, nitrate, chlorophyll-a and ORP be sensitively responding parameters of seawater by sand mining operations. The intensive collection of seawater near the sand mining operation revealed that each parameter show different distribution pattern: suspended solids showed an oval-shaped distribution of the north-south direction of 8 km wide and the east-west direction of 5 km wide at the surface and bottom layers. On the other hand, phosphate showed so narrow distribution not to traceable. Also ammonium showed a limited distribution, but its boundary was connected to the high nitrate and chlorophyll-a concentrations with high N/P ratios. From the last 4 years of the comprehensive and intensive investigations, we found that suspended solids, ammonium, nitrate, chlorophyll-a, and ORP revealed the sensitive parameters of water quality for tracing the sand mining operations in seawater. Especially suspended solids and ORP would be useful tracers for monitoring the water qualities of remote area like EEZ in Yellow Sea.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

Marine Bio-environmental Characteristics with the Distributions of Dinoflagellate Cyst Assemblages in the Ulsan Coastal Waters (UCW) (와편모조 시스트 분포에 의한 울산연안 해역의 생물해양환경 특성)

  • Yoon, Yang Ho
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.3
    • /
    • pp.361-372
    • /
    • 2017
  • This study described the spatial distribution of dinoflagellate cyst assemblages in the Ulsan Coastal Waters (UCW). Surface sediment samples from 15 stations revealed the occurrence of 33 species involving the Groups Protoperidinioid (51.5%), Gonyaulacoid (30.4%), Calciodineloid (9.1%), Gymnodinioid (3.0%), Diplopsallid (3.0%) and Tuberculodinioid (3.0%). The recorded cyst abundance in the UCW recorded was low ($260{\sim}1,680cysts\;g-dry^{-1}$) compared to Korean coastal waters. The abundance of heterotrophic cysts is higher in the Ulsan harbour and northwestern parts of UCW with eutrophic areas, however autotrophic species are more prevalent in the southern parts with open sea environments. The dinoflagellate cyst assemblages in the UCW were characterized by the dominance of Gonyaulax scrippsae, Protoperidinium sp. (Brigantedinium sp.), and Gonyaulax spinifera complex. The advent of the toxic dinoflagellate, Pyrodinium bahamense var. bahamense was recorded for the first time in the East-south sea of Korea. Therefore, as a result of ongoing monitoring and management for new toxic dinoflegallates from tropical or subtropical regions, analysis of dinoflagellate cyst assemblages in the UCW has been deemed necessary.

Late Quaternary Depositional Processes in the Korea Plateau and Ulleung Interplain Gap, East Sea (동해 한국대지 및 울릉 분지간통로의 제4기 후기 해저퇴적작용)

  • 윤석훈;박장준;한상준
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.187-198
    • /
    • 2003
  • High-resolution (Chirp, 3-11 kHz) echo facies and sedimentary facies of piston-core sediments were analyzed to reveal the late Quaternary depositional processes in the Korea Plateau and Ulleung Interplain Gap. The Korea Plateau is an Isolated topographic high with a very restricted input of terrigenous sediments, and its slope is characterized by a thin sediment cover and various-scale submarine canyons and valleys. Echo and sedimentary facies suggest that the plateau has been moulded mainly by persistent (hemi) pelagic sedimentation and intermittent settling of volcanic ashes. Sediments on the plateau slope and steep margins of ridges and seamounts were reworked by earthquake-induced, large-scale slope failures accompanied by slides, slumps and debris flows. As major fraction of the reworked sediments consists of (hemi) pelagic clay particles, large amounts of sediments released from mass flows were easily suspended to form turbid nepheloid layers rather than bottom-hugging turbidity currents, which flowed further downslope through the submarine canyons and spreaded over the Ulleung Basin plain. In the Ulleung Interplain Gap, sediments were introduced mainly by (hemi) pelagic settling and subordinate episodic mass flows (turbidity currents and debris flows) along the submarine channels from the slopes of the Oki Bank and Dok Island. The sediments in the Ulleung Interplain Channel and its margin were actively eroded and reworked by the deep water flow from the Japan Basin.