• Title/Summary/Keyword: tunnel stiffness

Search Result 220, Processing Time 0.021 seconds

A study on design concept and analysis method of closely spaced tunnels (근접터널의 설계개념 및 해석기법에 대한 연구)

  • Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • The use of tunnels in major transportation schemes has increased considerably during the last decade especially in urban area. The state of stress and the displacements in a zone around a tunnel will be modified by the construction of a tunnel. Therefore, it is necessary to study the influence factors for the nearby tunnels. This paper describes the design concept and analysis method on the closely spaced tunnels. The main purpose of the present paper is to study the influence of tunnel construction on the behaviour induced in the liners of nearby tunnels. The effects of tunnel proximity and alignment, liner stiffness and settlements are also reviewed in this paper. The paper then introduces the design and analysis methods for the closely spaced tunnels which is very useful in practice.

  • PDF

An analytical solution for soil-lining interaction in a deep and circular tunnel (원형터널에서 지반-라이닝 상호작용에 대한 수학적 해석해에 관한 연구)

  • Lee, Seong-Won;Jeong, Jea-Hyeung;Kim, Chang-Yong;Bae, Gyu-Jin;Lee, Joo-Gong;Park, Kyung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.427-435
    • /
    • 2009
  • This study deals with the analytical solution for soil-lining interaction in a deep and circular tunnel. Simple closed-form analytical solutions for thrust and moment in the circular tunnel lining due to static and seismic loadings are developed by considering the relations between displacement and interaction forces at the soil-lining interface. The interaction effect at the soil-lining interface is considered with new ratios (the normal and shear stiffness ratios). The effects of the ratios on the normalized thrust and the normalized moment are investigated.

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling;Xing Wu;Fu Huang;Jian Xiao;Yiwei Sun;Wei Feng
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.381-395
    • /
    • 2024
  • With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

Variable Suspension Design for Active Pantograph

  • Shin, Seungkwon;Kim, Hyungchul;Jung, Hosung;Park, Jongyoung;Kim, Sangahm
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.105-108
    • /
    • 2015
  • There are a lot of traffic jams in the metropolitan area and the commuting time has been longer nowadays. So the urban people has been interested in the GTX(Great Train Express) project in Korea. The GTX is the train which runs at 200km/h speed in underground tunnels. If the train also operates at high speed in tunnel section, the pressure wave will happen and the uplift force of pantograph may vary abruptly. If the rigid trolley bar system is used in tunnel section, it is difficult to improve the commercial speed of train. In order to improve the train speed in tunnel section, this paper presents the new pantograph concepts which can change the suspension stiffness and deals with the dynamic behavior characteristics of pantograph according to the parameter variation.

Development of wind tunnel test model of mid-rise base-isolated building

  • Ohkuma, Takeshi;Yasui, Hachinori;Marukawa, Hisao
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.203-214
    • /
    • 2004
  • This paper describes a method for developing a multi-degree-of freedom aero-elasto-plastic model of a base-isolated mid-rise building. The horizontal stiffness of isolators is modeled by several tension springs and the vertical support is performed by air pressure from a compressor. A lead damper and a steel damper are modeled by a U-shaped lead line and an aluminum line. With this model, the frequency ratio of torsional vibration to sway vibration, and plastic displacements of isolation materials can be changed easily when needed. The results of isolation material tests and free vibration tests show that this model provides the object performance. The peak displacement factors are about 4.5 regardless of wind speed in wind tunnel tests, but their gust response factor decreases with increment of wind speed.

MiSA (Method of Integrated Spectral Analysis) to Evaluate Structural Integrity of Tunnel Concrete Lining (터널 콘크리트 라이닝의 구조적 특성평가를 위한 탄성파 기법, MiSA의 개발)

  • 김기봉;추진호;조성호;조미라
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.49-56
    • /
    • 2001
  • The techniques to make assessment of the structural integrity of underground structures include Infrared thermagraphy, GPR using the reflection of the electromagnetic wave, ultrasonic test, seismic methods using the propagation of elastic wave, and etc These methods have pros and cons in the assessment of the structural integrity in the complex environment of the underground structure, so that a single method alone is not enough to evaluate parameters required for the assessment. In this study, a new seismic method was proposed to improve the existing methods and to provide an additional information like stiffness of concrete. The proposed method combines the advantages of the modified impact-echo test and the SASW method. To verify the validity of the proposed method, a large scale model of a tunnel concrete liner was built and the proposed method was applied to the center of the model and also to the corner of the model which has several distinct reflection boundaries.

  • PDF

Theoretical evaluation of collision safety for Submerged Floating Railway Tunnel (SFRT) by using simplified analysis

  • Seo, Sung-il;Moon, Jiho;Mun, Hyung-Suk
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.293-299
    • /
    • 2017
  • Submarine collisions is one of the major hazardous factor for Submerged Floating Railway Tunnel (SFRT) and this study presents the safety evaluation for submarine collision to SFRT by using theoretical approach. Simplified method to evaluate the collision safety of SFRT was proposed based on the beam on elastic foundation theory. Firstly, the time history load function for submarine collision was obtained by using one-degree-of-freedom vibration model. Then, the equivalent mass and stiffness of the structure were calculated, and the collision responses of SFRT were evaluated. Finite element analysis was conducted to verify the proposed equations, and it can be found that the collision responses, such as deflection, and acceleration, agreed well with the proposed equations. Finally, derailment condition for high speed train in SFRT due to submarine collision was proposed.

The development of a back analysis program for subsea tunnel stability under operation: transversal tunnel section (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 횡단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Lee, Sang-Hyun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.195-212
    • /
    • 2017
  • When back analysis is used for the assessment of an operating subsea tunnel safety in various measurement information such as stress, water pressure and tunnel lining and ground stiffness degradation, the reliable results within tolerable error rate can be obtained. By utilizing a commercial geotechnical analysis program FLAC3D, back analysis can be performed with a DEA which has already been successfully validated in previous studies. However, relative more time-consumption is the drawback of this approach. For this reason, this study introduced beam-spring model-based on FEM solver which uses less analysis time relatively. Beam-spring program capable of structural analysis of a circular tunnel section was developed by using Python language and combined with the built-DEA. From the measurement datum, expected to estimate the stability of an operation tunnel close to real-time.

Model Experiments and Behavior Analyses of The Tunnel Support Using TDR Sensor (TDR센서를 이용한 터널 지보재의 모형 실험과 거동해석)

  • Park, Min-Cheol;Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.35-45
    • /
    • 2011
  • This paper is to analyze the behaviors of tunnel support by TDR(Time Domain Reflectometry) sensor using electrical pulse. To analysis the behaviors of tunnel support, Copper tape as sensing materials was studied for on-site installation. Copper tape to the top of the glass tape, foam tape, and shielding the lower part was used electromagnetic shield sheet. For a high sensitivity to load and fill out the measurement noise emissions has been developed for the production of materials. This sensing material through the tunnel model tests for the change by surcharge load in TDR data were analyzed. Varing stiffness and support of conditions were determined the change of TDR data through PVC pipe tunnel section model tests. By comparing TDR data and finite element analysis, the behaviors of the tunnel support materials were analyzed qualitatively.

The behavior of adjacent structures in tunnelling induced ground movements (터널 시공에 따른 지반 및 인접건물의 거동평가)

  • Kim, Hak-Moon;Jeon, Seong-Kon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.313-322
    • /
    • 2003
  • This research work presents 3-D behavior of adjacent structures due to tunnelling induced ground movements by means of field measuring data and nonlinear FEM tunnel analysis. The results of the analytical methods from Mohr-Coulomb model are compared with the site measurement data obtained during the twin tunnel construction. It was found that the location and stiffness of the structure influence greatly the shape and pattern of settlement trough. The settlement trough for Greenfield condition was different from the trough for existing adjacent structures. Therefore the load and stiffness of adjacent structures should be taken into account for the stability analysis of the structures.

  • PDF