• Title/Summary/Keyword: tunnel roof

Search Result 185, Processing Time 0.024 seconds

Deformation Behavoirs of Arched Openings Related with Roof Curvature (천반 곡률반경에 따른 아치형 공동의 변형거동에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.10-18
    • /
    • 1996
  • Arched openings are generally excavated in underground construction works. Since stress distribution around openings depends on geological structure in rock mass, any shape of arched openings fully conformed with in-situ stress condition should be recommended to maintain mechanical safety of structures. Shape of arched openings is specified by both roof curvature and height-width ratio, and especially this report presents deformation behaviors related with roof curvature. Scale model tests and numerical studies of various shaped openings are conducted, where rectangular opening shows the greatest convergence. Through the anlayses of various arched opengings, as radius of roof curvature is increased, roof lowering and sidewall closure are remarkably increased, whereas floor heaving is increased little by little. By the way, it is useful that displacements of openings are roughly estimated in the stage of preliminary investigation. To find out elastic displacements of arched openings with any roof curvature, regressional formula and charts by least square method are represented. In addition elastoplastic deformation behavoirs of arched openings concerning associated adn non-associated flow rule are discussed.

  • PDF

Internal pressure dynamics of a leaky and quasi-statically flexible building with a dominant opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.61-91
    • /
    • 2013
  • An analytical model of internal pressure response of a leaky and quasi-statically flexible building with a dominant opening is provided by including the effect of the envelope external pressure fluctuations on the roof, in addition to the fluctuating external pressure at the dominant opening. Wind tunnel experiments involving a flexible roof and different building porosities were carried out to validate the analytical predictions. While the effect of envelope flexibility is shown to lower the Helmholtz frequency of the building volume-opening combination, the lowering of the resonant peak in the internal and net roof pressure coefficient spectra is attributed to the increased damping in the system due to inherent background leakage and envelope flexibility. The extent of the damping effects of "skin" flexibility and background leakage in moderating the internal and net pressure response under high wind conditions is quantified using the linearized admittance functions developed. Analytical examples provided for different combinations of background leakage and envelope flexibility show that alleviation of internal and net pressure fluctuations due to these factors by as much as 40 and 15% respectively is possible compared to that for a nominally sealed rigid building of the same internal volume and opening size.

Fluctuating Pressure Coefficients Distributions for Elliptical Dome Roof (타원형 돔 지붕의 변동풍압특성)

  • Lee, Jong-Ho;Cheon, Dong-Jin;Kim, Yong-Chul;Park, Sang-Woo;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.63-71
    • /
    • 2020
  • The fluctuating wind pressure of the low rise ratio(f/D=0.1) for the elliptical dome roof was analyzed to compare it with the previous studies of circular dome roofs. Wind tunnel test were conducted on a total of 10 wind directions from 0° to 90° while changing wall height-span ratios(H/D=0.1-0.5). For this, meanCP, rmsCP and wind pressure spectrum were analyzed. The analysis result leads to find differences in the shape of the spectra in the spanwise direction and leeward of the elliptical dome according to the wind direction variations of the elliptical dome roof.

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

Analysis of Tunnel Behavior Using Progressive Rockmass Failure Technique (암반의 진행성 파괴 기법을 이용한 터널거동 분석)

  • 이성민;이윤규;신성렬
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.288-295
    • /
    • 1999
  • Concentrated stresses due to the underground tunnel excavation easily cause many problems such as yielding, popping, and failure at the immediate roof, wall and floor of tunnel. Therefore, it is very important to predict the possibility of these problems when a tunnel is excavated underground. There are two typical methods to predict these problems. The one is to predict problems from the analysis of field monitoring data and the other is to predict them from computer simulations using good site investment data. Using the second method, this study attempted to describe the time-dependent or progressive manner of immediate roof and wall due to the underground tunnel excavation. An iterative technique was used to represent progressive failure of rockmass with the Hoek and Brown theory. By developing and simulating three different shapes of twin tunnels, this research estimated the proper size of critical pillar width between tunnels, distributed stresses on the tunnel walls, and convergences of tunnel crowns. Moreover, results out of progressive failure technique based on the Hoek and Brown theory were compared with the results out of Mohr-Coulomb theory.

  • PDF

Optimized Design of Mine Span Considering the Characteristics of Rockmass in Soft Ground (연약암반에서 암반의 특성을 고려한 광산갱도의 최적 설계)

  • Jang, Myoung Hwan;Ha, Taewook;Jeong, Hee Sun
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.125-141
    • /
    • 2018
  • For a long-term mine development plan, the determination and design of mine tunnel size are very important because it is the basis of plans for equipment, transportation and operation. The ${\bigcirc}{\bigcirc}$ mine has had a difficulty in changing the mining plan due to the design of the tunnels with an emphasis on productivity improvement, and much effort was needed to maintain the mine tunnel. In this study, we designed the mine tunnel with optimized tunnel span considering the mechanical properties of rockmass and established the support plan. To do this, the estimation of the mechanical parameters(Swelling pressure, deformation coefficient and earth coefficient), field investigations and various analyses were carried out. As a result, it was necessary to consider the downsizing of the tunnel section in order to maintain the tunnel stability and dimension by using the roof bolt and analyzed that various functional constructions of the support material and method would be required to maintain the current tunnel size.

Wind pressure provisions for gable roofs of intermediate roof slope

  • Stathopoulos, Theodore;Wang, Kai;Wu, Hanqing
    • Wind and Structures
    • /
    • v.4 no.2
    • /
    • pp.119-130
    • /
    • 2001
  • The paper addresses the suitability of wind pressure coefficients specified in contemporary design standards and codes of practice for gable roofs of intermediate slope (roof angle $10^{\circ}-30^{\circ}$). In a recent research study, a series of low building models with different roof slopes in this intermediate range were tested in a boundary layer wind tunnel under simulated open country terrain conditions. This was different from the original study in the 70's, which produced the current provisions on the basis of a model tested only for a single roof slope (4:12) in this range. The results of the study suggest that a modification to the American wind provisions would be warranted to make them more representative of the true local and area-averaged wind loads imposed on gable roofs of intermediate slope.

Wind loads on solar panels mounted parallel to pitched roofs, and acting on the underlying roof

  • Leitch, C.J.;Ginger, J.D.;Holmes, J.D.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.307-328
    • /
    • 2016
  • This paper describes an investigation of the net wind loads on solar panels and wind loads on the underlying roof surface for panels mounted parallel to pitched roofs of domestic buildings. Typical solar panel array configurations were studied in a wind tunnel and the aerodynamic shape factors on the panels were put in a form appropriate for the Australian/New Zealand Wind Actions Standard AS/NZS 1170.2:2011. The results can also be used to obtain more refined design data on individual panels within an array. They also suggest values for the aerodynamic shape factors on the roof surface under the panels, based on a gust wind speed at roof height, of ${\pm}0.5$ for wind blowing parallel to the ridge, and ${\pm}0.6$ for wind blowing perpendicular to the ridge. The net loads on solar arrays in the middle portion of the roof are larger than those on the same portion of the roof without any solar panels, thus resulting in increased loads on the underlying roof structure.

Towards guidelines for design of loose-laid roof pavers for wind uplift

  • Mooneghi, Maryam Asghari;Irwin, Peter;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.133-160
    • /
    • 2016
  • Hurricanes are among the most costly natural hazards to impact buildings in coastal regions. Building roofs are designed using the wind load provisions of building codes and standards and, in the case of large buildings, wind tunnel tests. Wind permeable roof claddings like roof pavers are not well dealt with in many existing building codes and standards. The objective of this paper is to develop simple guidance in code format for design of loose-laid roof pavers. Large-scale experiments were performed to investigate the wind loading on concrete roof pavers on the flat roof of a low-rise building in Wall of Wind, a large-scale hurricane testing facility at Florida International University. They included wind blow-off tests and pressure measurements on the top and bottom surfaces of pavers. Based on the experimental results simplified guidelines are developed for design of loose-laid roof pavers against wind uplift. The guidelines are formatted so that use can be made of the existing information in codes and standards such as American Society of Civil Engineering (ASCE) 7-10 standard's pressure coefficients for components and cladding. The effects of the pavers' edge-gap to spacer height ratio and parapet height to building height ratio are included in the guidelines as adjustment factors.