• Title/Summary/Keyword: tunnel roof

Search Result 185, Processing Time 0.043 seconds

Numerical Analysis of Crossing Tunnel Under Railroad using Roof Panel Shield Method (Roof Panel Shield 공법을 이용한 철도지하횡단터널 굴착의 수치해석 연구)

  • Shin Eun-Chul;Kim Jung-Hyi;Jung Byung-Chul;Roh Jeong-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.655-660
    • /
    • 2005
  • Recently, the crossing tunnel has been constructed to maintain the operation highway as well as railroad. The advantages of adopting RPS method in crossing tunnel construction are needed a little space and easy to change the direction of cutting shoe during the construction of pipe roof. The numerical analysis of RPS was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing tunnel construction.

  • PDF

An environmentally friendly tunnel construction method at low overburden (환경친화적인 저토피 터널굴착 공법)

  • Han, Kwang-Mo;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.207-216
    • /
    • 2002
  • Conventional Korean tunnel portals require a lot of overburden. For stability reasons, about 1.5 to 2.0 times the tunnel diameter is needed for the height in order to achieve a sufficient arching effect. Thus, considerable movement of earth and support constructions are required which lead to undesirably large changes of and damage to the environment. With a massively designed pipe roof, tunnels at low overburden can be built. To effectively construct pipe roof as an advanced safeguarding method, the following properties are indispensable: stability, insensitivity to settling and drilling accuracy. A new pipe roof method, AT-casing system, has been developed which on the one hand entirely combines the properties mentioned above, and which on the other hand permits the construction of safe, economical and environmentally friendly tunnels at low overburden heights of 3 to 5m.

  • PDF

Roof failure of shallow tunnel based on simplified stochastic medium theory

  • Huang, Xiaolin;Zhou, Zhigang;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.571-580
    • /
    • 2018
  • The failure mechanism of tunnel roof is investigated with upper bound theorem of limit analysis. The stochastic settlement and nonlinear failure criterion are considered in the present analysis. For the collapse of tunnel roof, the surface settlement is estimated by the simplified stochastic medium theory. The failure curve expressions of collapse blocks in homogeneous and in layered soils are derived, and the effects of material parameters on the potential range of failure mechanisms are discussed. The results show that the material parameters of initial cohesion, nonlinear coefficient and unit weight have significant influences on the potential range of collapse block in homogeneous media. The proportion of collapse block increases as the initial cohesion increases, while decreases as the nonlinear coefficient and the unit weight increase. The ground surface settlement increases with the tunnel radius increasing, while the possible collapse proportion decreases with increase of the tunnel radius. In layered stratum, the study is investigated to analyze the effects of material parameters of different layered media on the proportion of possible collapse block.

Wind tunnel modeling of roof pressure and turbulence effects on the TTU test building

  • Bienkiewicz, Bogusz;Ham, Hee J.
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.91-106
    • /
    • 2003
  • The paper presents the results of 1:50 geometrical scale laboratory modeling of wind-induced point pressure on the roof of the Texas Tech University (TTU) test building. The nominal (prevalent at the TTU site) wind and two bounding (low and high turbulence) flows were simulated in a boundary-layer wind tunnel at Colorado State University. The results showed significant increase in the pressure peak and standard deviation with an increase in the flow turbulence. It was concluded that the roof mid-plane pressure sensitivity to the turbulence intensity was the cause of the previously reported field-laboratory mismatch of the fluctuating pressure, for wind normal and $30^{\circ}$-off normal to the building ridge. In addition, it was concluded that the cornering wind mismatch in the roof corner/edge regions could not be solely attributed to the wind-azimuth-independent discrepancy between the turbulence intensity of the approach field and laboratory flows.

3-Dimensional Numerical Analysis of Crossing Tunnel under Railroad using RPS Method (RPS공법을 이용한 철도횡단터널의 3차원 수치해석)

  • Shin Eun-Chul;Kim Jung-Hyi;Lee Eun-Soo;Roh Jeong-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.454-461
    • /
    • 2005
  • There are many cross tunnelling methods such as NTR, TRCM, Messer Shield, Front Jacking, and Pipe Roof Method. The advantages of adopting RPS(Roof Panel Shield) method in crossing tunnel construction with comparing other existing cross tunnelling method are needed a little space and easy to change the direction of cutting shoe during the construction of pipe roof. The 3-dimensional numerical analysis of RPS was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing railroad tunnel construction.

  • PDF

Analysis of Wind Pressure Coefficient for Spatial Structure Roofs by Wind Load Standards and Wind Tunnel Tests (국가별 풍하중 기준과 풍동실험에 따른 대공간 구조물 지붕의 풍압계수 분석)

  • Cheon, Dong-jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.103-113
    • /
    • 2017
  • Spatial Structure has suffered from a lot of damage due to the use of lightweight roofs. Among them, the damage caused by strong winds was the greatest, and the failure of the calculation of the wind load was the most frequent cause. It provides that wind tunnel test is used to calculate the wind load. However, it is often the case that the wind load is calculated based on the standard of wind load in the development design stage. Therefore based on this, the structure type and structural system and member design are often determined. Spatial structure is usually open at a certain area. The retractable roof structure should be operated with the open roof in some cases, so the wind load for the open shape should be considered, but it is not clear on the basis of the wind load standard. In this paper, the design wind pressure of a closed and retractable roof structure is calculated by KBC2016, AIJ2004, ASCE7-10, EN2005, and the applicability of wind pressure coefficient is compared with wind tunnel test.

Comparison of Wind Pressure Coefficient and Wind Load Standard for Cladding in a Retractable Dome Roof by Wind Tunnel Test (풍동 실험을 통한 개폐식 돔 지붕의 외장재용 풍압 계수와 풍하중 기준 비교)

  • Cheon, Dong-jin;Kim, Yong-Chul;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2018
  • The biggest impact on the cladding design of buildings is wind loads. Wind tunnel tests were conducted to examine the applicability of current wind load standards about membrane retractable roof spatial structure. A dome model with a circular shape that is retractable to the center of the dome was made (Opening ratio = 0, 10, 30, 50). In addition, height adjustable turntables were made and tested with five patterns with H/D = 0.1, 0.2, 0.3, 0.4 and 0.5. The maximum wind pressure coefficient and the minimum wind pressure coefficient for the cladding were analyzed and the experimental wind pressure coefficient were compared with the current wind load standards, KBC2016 and AIJ-RLB(2015). The experimental value and the reference value of the enclosed roof were very similar and showed possibility of application, but opened roof case was found that the reference value was underestimated.

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.

Wind pressures on a large span canopy roof

  • Rizzo, Fabio;Sepe, Vincenzo;Ricciardelli, Francesco;Avossa, Alberto Maria
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.299-316
    • /
    • 2020
  • Based on wind tunnel tests, this paper investigates the aerodynamic behavior of a large span canopy roof with elliptical plan and hyperbolic paraboloid shape. The statistics of pressure coefficients and the peak factor distributions are calculated for the top and bottom faces of the roof, and the Gaussian or non-Gaussian characteristics of the pressure time-histories in different areas of the roof are discussed. The cross-correlation of pressures at different positions on the roof, and between the top and bottom faces is also investigated. Combination factors are also evaluated to take into account the extreme values of net loads, relevant to the structural design of canopies.

Wind loads on industrial solar panel arrays and supporting roof structure

  • Wood, Graeme S.;Denoon, Roy O.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.4 no.6
    • /
    • pp.481-494
    • /
    • 2001
  • Wind tunnel pressure tests were conducted on a 1:100 scale model of a large industrial building with solar panels mounted parallel to the flat roof. The model form was chosen to have the same aspect ratio as the Texas Tech University test building. Pressures were simultaneously measured on the roof, and on the topside and underside of the solar panel, the latter two combining to produce a nett panel pressure. For the configurations tested, varying both the lateral spacing between the panels and the height of the panels above the roof surface had little influence on the measured pressures, except at the leading edge. The orientation of the panels with respect to the wind flow and the proximity of the panels to the leading edge had a greater effect on the measured pressure distributions. The pressure coefficients are compared against the results for the roof with no panels attached. The model results with no panels attached agreed well with full-scale results from the Texas Tech test building.