• Title/Summary/Keyword: tunnel linings

Search Result 90, Processing Time 0.029 seconds

An experimental study on the effect of deterioration of drainage system on tunnel structures (배수시스템 수리기능저하가 터널구조물에 미치는 영향에 대한 실험적 연구)

  • Kwon, Oh-Yeob;Shin, Jong-Ho;Yang, Yu-Hong;Joo, Eun-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.970-979
    • /
    • 2006
  • Construction of underground structure requires higher standard of planning and design specifications than in surface construction. However, high construction cost and difficult working environment limit design level and construction quality. One of the most sensitive factors to be considered are infiltration and external pore-water pressures. Development of pore-water pressure may accelerate leakage and cause deterioration of the lining. In this paper, the development of pore-water pressure and its potential effect on the linings are investigated using physical model tests. A simple physical equipment model with well-defined hydraulic boundary conditions was devised. The deterioration procedure was simulated by controlling both the permeability of filters and flowrate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanim of pore-water pressure development on the tunnel lining which is the effect of deterioration of drainage system. The laboratory tests were simulated using coupled numerical method, and shown that the deterioration mechanism can be reproduced using coupled numerical modelling method.

  • PDF

A Study on Field Change Case of Tunnel Concrete Lining Designs Using GLI(Ground Lining Interaction) Model (GLI(Ground-Lining Interaction)모델을 이용한 터널 콘크리트라이닝의 현장 설계변경 사례에 대한 연구)

  • Chang, Seok-Bue;Lee, Soo-Yul;Suh, Young-Ho;Yun, Ki-Hang;Park, Yeon-Jun;Kim, Su-Man
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2010
  • GLI model was verified to consider the interaction between a ground and a tunnel lining and to rationally reduce the ground load acting on the secondary lining(concrete lining) of a tunnel. In this study, the economy and the construction condition of tunnel concrete linings designed by a conventional frame model at Lot O of OO line were highly enhanced through a field design change using GLI model. For a few safe considerations, not only about 50% saving of reinforcing steel could reduce the material cost but also the wide space between bars could make it easy to pour concrete mix without voids. There was large saving effect of reinforcing steel for poor ground conditions because Terzaghi's load used in the conventional frame model produces too much high loads for those conditions.

2D numerical investigation of twin tunnels-Influence of excavation phase shift

  • Djelloul, Chafia;Karech, Toufik;Demagh, Rafik;Limam, Oualid;Martinez, Juan
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.295-308
    • /
    • 2018
  • The excavation of twin tunnels is a process that destabilizes the ground. The stability of the tunnel lining, the control of ground displacements around the tunnel resulting from each excavation and the interaction between them must be controlled. This paper provides a new approach for replacing the costly 3D analyses with the equivalent 2D analyses that closely reflects the in-situ measurements when excavating twin tunnels. The modeling was performed in two dimensions using the FLAC2D finite difference code. The three-dimensional effect of excavation is taken into account through the deconfinement rate ${\lambda}$ of the soil surrounding the excavation by applying the convergence-confinement method. A comparison between settlements derived by the proposed 2D analysis and the settlements measured in a real project in Algeria shows an acceptable agreement. Also, this paper reports the investigation into the changes in deformations on tunnel linings and surface settlements which may be expected if the twin tunnels of T4 El-Harouche Skikda were constructed with a tunneling machine. Special attention was paid to the influence of the excavation phase shift distance between the two mechanized tunnel faces. It is revealed that the ground movements and the lining deformations during tunnel excavation depend on the distance between the tunnels' axis and the excavation phase shift.

Design of the reinforced concrete lining in bakun diversion tunnels (말레이지아 바쿤 가배수로 터널의 철근콘크리트 라이닝 설계)

  • 지왕률;임태정
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.20-26
    • /
    • 1999
  • The completion of the Bakun Diversion Tunnel is subsequently to the Main Dam construction. Therefore, the completion date is very important for the Bakun Hydroelectric Project. Generally, the tunnel lining work as a finishing phase of the tunnelling project occupies a important portion as well as an excavation and a support work of the tunnels in respect to the construction cost and period. Internal section of Bakun Diversion Tunnel is designed circular shape to reduce the roughness of the water flow with 12 meters in diameter of total length 4314.6 meters of 3 tunnels. The lining thickness is varied between 500 mm and 700 mm depending on the structural condition. From the original Tender design of the Bakun tunnels, the required quantity of steel bars was 5,985 ton designed by Reinforced Concrete (RC) through the entire tunnel linings. During the detail design stage by the consideration of the rock conditions and various load conditions, we could suggest five kinds of RC lining type including plain concrete lining type. Through the detail design modification, we could reduce the required amount of steel bars to 2,178 ton, as a half of original Bill of Quantity. Finally, this design modification give us the time and cost saving effect to catch up the construction progress in time.

  • PDF

Estimation for Primary Tunnel Lining Loads

  • Kim, Hak-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.153-204
    • /
    • 1998
  • Prediction of lining loads due to tunnelling is one of the major issues to be addressed in the design of a tunnel. The objective of this study is to investigate rational and realistic design loads on tunnel linings. factors influencing the lining load are summarized and discussed. The instruments for measuring the lining loads are reviewed and discussed because field measurements are often necessary to verify the design methods. Tunnel construction in the City of Edmonton has been very active for storm and sanitary purposes. Since the early 1970's, the city has also been developing an underground Light Rail Transit system. The load measurements obtained from these tunnels are compared with the results from the existing design methods. However, none of the existing methods are totally satisfactory, Therefore, there is some room for improvement in the prediction of lining loads. The convergence-confinement method is reviewed and applied to a case history of a tunnel in Edmonton. The convergence curves are obtained from 2-D finite element analyses using three different material models and theoretical equations. The limitation of the convergence-confinement method is discussed by comparing these curves with the field measurements. Three-dimensional finite element analyses are performed to gain a better understanding of stress and displacement behaviour near the tunnel face. An improved design method is proposed based on the review of existing design methods and the performance of numerical analyses. A specific method or combination of two different methods is suggested for the estimation of lining loads for different conditions of tunnelling. A method to determine the stress reduction factor is described. Typical values of dimensionless load factors nD/H for tunnels in Edmonton are obtained from parametric analyses. Finally, the loads calculated using the proposed method are compared with field measurements collected from various tunnels in terms of soil types and construction methods to verify the method. The proposed method gives a reasonable approximation of the lining loads. The proposed method is recommended as an approximate guideline for the design of tunnels, but the results should be confirmed by field measurements due to the uncertainties of the ground and lining properties and the construction procedures, This is the reason that in-situ monitoring should be an integral part of the design procedure.

  • PDF

Evaluation of the blast-restriction zone to secure tunnel lining safety (터널라이닝 안전관리를 위한 발파제한영역 평가)

  • Shin, Jong-Ho;Moon, Hoon-Ki;Choi, Kyu-Cheol;Kim, Tae-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.85-95
    • /
    • 2009
  • In urban areas, blast excavation adjacent to tunnels is carried out frequently. It is generally required to secure static and dynamic stability of nearby tunnel structures for any such activities. Although there is some national guidelines for static safety, there is little guides to risk zoning controling the dynamic behavior of the underground structures. In this study, impacts on the blast-induced vibration are investigated using numerical study. An attempt to define the restricted area of blast adjacent to subway tunnels was also made. Particular concerns were given to tunnel depth and ground types. By carrying out the parametric study on depth and ground patterns, the envelope of blast distance of which dynamic response on the lining is controlled under 1 cm/sec, is established. It is shown that the increase in depth has increased the required safety distance slightly until the distance of 3.5 times of the tunnel diameter. Despite small changes in safety distance, it can be generally said that the effects of depth and stiffness of the ground is not significant in controlling the particle velocity of the tunnel linings.

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Evaluation of fire-proofing performance of reinforced concrete tunnel lining coated by newly developed material (신개발 내화재료에 피복된 철근콘크리트 터널라이닝의 내화성능평가)

  • Park, Hae-Genn;Kim, Jang-Ho Jay
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Efficient traffic network is required in urban area for good living condition. However, dense traffic network creates traffic jam and gives bad influences to the ground environment. Therefore, advanced use of underground and tunnel is required. But, in the last 20 years many tunnel fire accidents have occurred all over the world. Increase of tunnels and increase of traffics result in increase of tunnel fire. Tunnel fire creates damage to people and to the tunnel structure. Also, tunnel fire creates a big economical loss. In a mountain tunnel, the stability of the tunnel will not be disturbed by fire although the tunnel lining will get a severe damage. However, in a shield tunnel or immersed tube tunnel, cut and cover tunnel, there is a high possibility that tunnel itself will collapse by fire because their tunnel concrete lining is designed as a structural member. The aim of this experimental research is to verify the fire protection performance of newly developed cementitious material compared with the broadly used existing products in Europe and Japan. For the experiments, the general NATM tunnel concrete linings with the newly developed material were tested using fire loading curve of RABT (Maximum peak temperature is $1,200^{\circ}C$) and RWS (Maximum peak temperature is $1,350^{\circ}C$). From the test results, the newly developed fire protection material applied with 30 mm thickness showed good fire-proofing performance under RABT fire loading.

  • PDF

Basic Study for Evaluation on Application of Energy Lining Segment (Energy Lining Segment 적용성 평가를 위한 기초연구)

  • Han, Sang-Hyun;Park, Sisam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.143-147
    • /
    • 2013
  • Geothermal energy is easy to take advantage of renewable energy stored in the earth and the heat exchanger can be collected through a heat exchange piping system. In this study, have been developed a heat exchange pipe loop system which it could be installed in tunnel segmental linings to collect geothermal energy around the tunnel. The heat exchange pipe loop system incorporated in the tunnel segments circulate fluid to transport with heat from the surrounding ground and the heat can be used for heating and cooling of nearby structures or districts. The segmental lining incorporating heat exchange pipe loop system are called as ELS (Energy Lining Segment). There are a number of examples incorporating a heat exchange pipe loop system in a tunnel lining in Europe. In this study, a field case using Energy Lining Segment in Germany and applications in urban area are thoroughly examined. In addition, a CFD (Computational Fluid Dynamics) analysis was carried out to investigate heat flow in Energy Lining Segment.

Seismic evaluation of masonry railroad tunnels (조적식 철도터널의 내진성능평가에 관한 연구)

  • Lee, In-Mo;Jeong, Kyeong-Han;Lee, Jun-Suk;Choi, Jin-Yu;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2002
  • Domestic masonry railroad tunnel lining consists of red bricks or granite stone blocks and mortar. It is necessary to evaluate the behaviour of the masonry tunnel lining during an earthquake because the lining was constructed without the consideration of seismic loads. In this study, a methodology to evaluate the seismic resistant capacity of masonry tunnel linings was proposed, i.e. material property evaluation and seismic analysis technique. The red brick masonry tunnel lining is arrayed with multi-layers composed of 3 to 5 bricks depending on ground conditions and each brick is attached with mortar. Equivalent property concept was adopted to consider the stiffness difference among the red brick material itself and joints between bricks. Response spectrum analysis was performed by considering ground-structure interactions. A parametric study was performed to figure out the effect of relative stiffness between the lining and rock mass on the seismic behavior. A resonable countermeasure to minimize the earthquake-induced damage was also proposed.

  • PDF