• Title/Summary/Keyword: tunnel failure

Search Result 449, Processing Time 0.029 seconds

Major causes of failure and recent measurements of tunnel construction (터널시공 중 붕락발생 원인과 최신 보강기술)

  • Park, Bong-Ki;Hwang, Je-Don;Park, Chi-Myeon;Kim, Sang-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.140-153
    • /
    • 2005
  • During the tunnel construction the major failure mode can be categorized as: tunnel failure just after the tunnel excavation without support, failure after application of shotcrete and finally failure after setting the concrete lining. The failure mode just after the tunnel excavation without support, can be further classified as : bench failure, crown failure, face failure, full face failure, failure due to weak strata and failure due to overburden. Moreover the failure after application of shotcrete is classified as heading face failure, settlement of shotcrete support, local failure of shotcrete lining and invert shotcrete. To find out the major causes of tunnel collapse, the investigation was done in case of the second phase of Seoul subway construction. The investigation results depicted that the major causes of tunnel collapse were due to the weak layer of rock/fault and sudden influx of ground water from the tunnel crown. While the investigation results of the mountain road tunnels construction have shown that the major causes of tunnel failure were inadequate analysis of tunnel face mapping results, intersection of faults and limestone cavities. In this paper some recent measurement in order to mitigate such tunnel collapse are presented

  • PDF

Model Test and Numerical Analysis for Failure Behaviour of Shallow Tunnel Considering Unsupported Tunnel Length (굴진장을 고려한 얕은 터널파괴거동에 대한 모형실험 및 수치해석)

  • Kim, Young-Min
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.400-410
    • /
    • 2005
  • During excavation of shallow tunnels in soft ground, failure mechanism around the tunnel face have major influence on the stability of tunnels. In this paper, a series of laboratory tests under plane strain condition on the small scale of a shallow tunnel considering unsupported tunnel length has been performed. The results have shown that tunnel failure mechanism changes from failure mode 1 to failure mode 2 as unsupported tunnel length increases. By comparing the experimental and the numerical results, the loosening pressure for the shallow tunnel and progressive failure have been investigated.

Failure of circular tunnel in saturated soil subjected to internal blast loading

  • Han, Yuzhen;Liu, Huabei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.421-438
    • /
    • 2016
  • Explosions inside transportation tunnels might result in failure of tunnel structures. This study investigated the failure mechanisms of circular cast-iron tunnels in saturated soil subjected to medium internal blast loading. This issue is crucial to tunnel safety as many transportation tunnels run through saturated soils. At the same time blast loading on saturated soils may induce residual excess pore pressure, which may result in soil liquefaction. A series of numerical simulations were carried out using Finite Element program LS-DYNA. The effect of soil liquefaction was simulated by the Federal Highway soil model. It was found that the failure modes of tunnel lining were differed with different levels of blast loading. The damage and failure of the tunnel lining was progressive in nature and they occurred mainly during lining vibration when the main event of blast loading was over. Soil liquefaction may lead to more severe failure of tunnel lining. Soil deformation and soil liquefaction were determined by the coupling effects of lining damage, lining vibration, and blast loading. The damage of tunnel lining was a result of internal blast loading as well as dynamic interaction between tunnel lining and saturated soil, and stress concentration induced by a ventilation shaft connected to the tunnel might result in more severe lining damage.

Considerable Parameters and Progressive Failure of Rock Masses due to the Tunnel Excavation (터널 굴착시 고려해야 할 주변앙반의 매개변수와 진행성 파괴)

  • 임수빈;이성민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.231-234
    • /
    • 1994
  • Concentrated stresses due to the tunnel excavation easily cause failure around opening in the soft rock mass layer. Thus, while excavatng tunnel in the soft rock mass layerm it is very important to predict the possibility of failure or yielding zones around tunnel boundary. There are two typical methods to predict these; 1) the analysis of field monioring data and 2) numerical analysis. In this study, it was attempted to describe the time-dependent or progressive rock mass manner due to the continuous failure and fracturing caused by surrounding underground openings using the second method. In order to apply the effects of progressive failure underground, an iterative technique was used with the Hoek and Brown rock mass failure theory. By developing and simulating, three different shapes of twin tunnels, this research simulated and estimated the proper size of critical pillar width between tunnels, distributed stresses on the tunnel sides, and convergences of tunnel crowns. Moreover, results out progressive failure technique based on the Hoek and Brown theory were compared with the results out of Mohr-Coulomb theory.

  • PDF

Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing

  • Seo, Seunghwan;Lim, Hyungsung;Chung, Moonkyung
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.457-470
    • /
    • 2021
  • In this study, the pull-out behavior of a tunnel-type anchorage for suspension bridges was investigated using experimental tests and image processing analyses. The study focused on evaluating the initial failure behavior and failure mode of the tunnel-type anchorage. In order to evaluate the failure mode of tunnel-type anchorage, a series of scaled model tests were conducted based on the prototype anchorage of the Ulsan Grand Bridge. In the model tests, the anchorage body and surrounding rocks were fabricated using a gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests demonstrate that the tunnel-type anchorage underwent a wedge-shaped failure. In addition, the failure mode changed according to the differences in the physical properties of the surrounding rock and the anchorage body and the size of the anchor plate. The size of the anchor plate was found to be an important parameter that determines the failure mode. However, the difference in physical properties between the surrounding rock and the anchorage body did not affect its size. In addition, this study analyzed the initial failure behavior of the tunnel-type anchorage through image analysis and confirmed that the failure was sequentially transferred from the inside of the tunnel to the surrounding rock according to the image analysis. The reasonable failure mode for the design of the tunnel-type anchorage should be wedge-type rather than pull-out type.

An improved collapse analysis mechanism for the face stability of shield tunnel in layered soils

  • Chen, Guang-hui;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • Based on the results of Han et al. (2016), in the failure zone ahead of the tunnel face it can be obviously identified that a shear failure band occurs in the lower part and a pressure arch happens at the upper part, which was often neglected in analyzing the face stability of shield tunnel. In order to better describe the collapse failure feature of the tunnel face, a new improved failure mechanism is proposed to evaluate the face stability of shield tunnel excavated in layered soils in the framework of limit analysis by using spatial discretization technique and linear interpolation method in this study. The developed failure mechanism is composed of two parts: i) the rotational failure mechanism denoting the shear failure band and ii) a uniformly distributed force denoting the pressure arch effect. Followed by the comparison between the results of critical face pressures provided by the developed model and those by the existing works, which indicates that the new developed failure mechanism provides comparatively reasonable results.

A Study on Effects of Failure Behaviour of Tunnel Using A Numerical Analysis (수지해석에 의한 터널의 파괴거동에 미지는 영향분석)

  • 김영민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.309-314
    • /
    • 1999
  • In this paper, an application of finite element procedure fur tunnel failure analysis has been studied. The numerical model is applied to the simulation of a series of plane strain laboratory tests on the small scale model of a shallow tunnel. By comparing experimental and numerical results some conclusions are drawn on the effectiveness of the numerical approach. The findings from these numerical experiments show relative differences in the pattern of failure behaviour for shallow tunnels.

  • PDF

Roof collapse of shallow tunnel in layered Hoek-Brown rock media

  • Yang, X.L.;Li, K.F.
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.867-877
    • /
    • 2016
  • Collapse shape of tunnel roof in layered Hoek-Brown rock media is investigated within the framework of upper bound theorem. The traditional collapse mechanism for homogeneous stratum is no longer suitable for the present analysis of roof stability, and it would be necessary to propose a curve failure mode to describe the velocity discontinuity surface in layered media. What is discussed in the paper is that the failure mechanism of tunnel roofs, consisting of two different functions, is proposed for layered rock media. Then it is employed to investigate the impending roof failure. Based on the nonlinear Hoek-Brown failure criterion, the collapse volume of roof blocks are derived with the upper bound theorem and variational principle. Numerical calculations and parametric analysis are carried out to illustrate the effects of different parameters on the shape of failure mechanism, which is of overriding significance to the stability analysis of tunnel roof in layered rock media.

Analysis of Collapse Shape and Cause in the Highway Tunnel (고속도로터널의 붕락유형과 원인 분석)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.13-24
    • /
    • 2000
  • The collapse shapes and causes of tunnel in the highway were analyzed and reinforced methods of tunnel were investigated in the paper. Collapse shapes of tunnel are divided into three types such as subsurface failure, small scale wedge failure and slickenside strata failure. These three shapes consist of 35%, 50%, and 15%, respectively. The 85% of collapse was located near the entrance and exit of tunnel. The 15% was located at the intersection of emergency laybys. When tunnel collapses are analyzed by the failure concept, sliding failure amounts to more than 83%.

  • PDF

Numerical Study on Failure Mechanism of Tunnel Shotcrete Lining (터널 숏크리트 라이닝 파괴 메커니즘에 대한 수치해석적 고찰)

  • Shin, Hyusoung;Shin, Dongin;Bae, Gyujin;Kim, Donggyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.167-177
    • /
    • 2009
  • This study investigates a failure mechanism of a tunnel shotcrete lining with respect to a concentrated load due to blocky rock mass. First of all, it is carried out to survey relevant researches to shotcrete failures by literature reviews and to numerically re-investigate the failure modes of shotcrete lining given by previous researches. Through this study, the failure modes are relocated with the conditions which induce each failure mode newly proposed by this study. In addition to this, the arching shape of tunnel lining, which has not been considered in the previous research despite of inherent geometrical characteristics in tunnels, is taken into consideration in numerical investigation on lining failure in this study. As a result, it is shown that more simplified failure modes can be found on the tunnel boundary condition and the corresponding failure condition to each mode can be different from ones of the previous study due to a tunnel arching effect.

  • PDF