• Title/Summary/Keyword: tunnel excavation

Search Result 976, Processing Time 0.034 seconds

Development of Rockmass Predictiom System during tunnel excavation(Sol-An Tunnel) (터널 굴착시 암반예측시스템 개발(솔안터널))

  • Kim Yong-Il;Cho Sang-Kook;Yang Jong-hwa;Kim Jang-Soo;Lee Nai-Yong
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.53-67
    • /
    • 2003
  • In this paper, a new systematic method will be introduced, in which a Rock-mass Prediction System(RPS) predicts the geological conditions and rock mass movements before tunnel excavation and the appropriate counter-measures are taken in the expected weak zones during tunnel construction. The Rock-mass Prediction System(RPS) consists of the LIM, a horizontal con drilling and a seismic exploration method (TSP/HSP). In the Rock-mass Prediction System(RPS), the seismic exploration method (TSP/HSP) gives information on the locations of the weak zones such as major faults and voids in wide-range, and the horizontal core drillings are utilized to find exact location and widths of the faults or voids near the weak zones which was predicted by the seismic exploration method (TSP/HSP). The LIM is used to find the hardness of the rock mass and small weak zones near the excavation face. The Rock-mass Prediction System(RPS) was successfully applied to the Sol-An Tunnel and the effectiveness of the system was verified.

  • PDF

An Estimation of the Excavation Damaged Zone at the KAERI Underground Research Tunnel (한국원자력연구원 내 지하연구시설에서의 굴착손상영역 평가)

  • Lee, Chang-Soo;Kwon, Sang-Ki;Choi, Jong-Won;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.359-369
    • /
    • 2011
  • In this study, physical, mechanical, and thermal properties of rock samples were investigated to estimate the Excavation Damaged Zone (EDZ) developed during the construction of the KAERI Underground Research Tunnel. The average porosity in the EDZ was increased by about 140%. The average wave velocity, Young's modulus, and uniaxial compressive strength in the EDZ were decreased by about 11, 37, and 16%, respectively. And the thermal conductivity in the EDZ was decreased by about 20%. From the laboratory tests, the EDZ size could be estimated to be around 1.1-2.4 m.

A Study on Experimental Method of Blasting Vibration in Curing Concrete (양생중인 콘크리트에서의 발파진동의 영향 시험방법에 대한 연구)

  • Kim, Jang-Deuk;Kim, Yong-Ha
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.417-422
    • /
    • 2009
  • Tunnels that have recently been constructed are characterized by longer length than ever before and furthermore they frequently go through the ground area with poor conditions such as fractured zones. If ground strength is weak, plastic deformation of tunnel occurs, and occasionally a big fall may be brought about. Up to now, the construction work of tunneling has been executed as a sequential method placing the lining concrete after completion of excavation. Such a method requires a long time and much money to complete the tunnel. It is hard to ensure the stability of tunnel if tunnel is left undone for a long time after excavation in fracture zones or plastic grounds. For this reason, we tried to take simultaneous construction of tunnel excavation and lining concrete in order to not only shorten construction schedule but also stabilize the tunnel at the highly fractures zone as soon as possible. As preliminary consideration for simultaneous construction, in-situ tests are performed to calculate the isolation distance over which blasting vibration does not influence the strength of lining concrete. Improvement of ling form, placing method of concrete, ventilation using a dust collector, together with equipment arrangement, was made to assure the simultaneous construction work.

Slope stability method establish and carry out in vertical slope for tunnel excavation (터널의 굴착을 위한 수직사면의 안정대책 방안 수립 및 시행)

  • Park, Chal-Sook;Kim, Jun-Yong;Kwan, Han;Kim, Min-Jo;Choi, Yu-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.992-1006
    • /
    • 2008
  • The tunnel type spillways is under construction to increasing water reservoir capacity in Dae-am dam. Cutting-slope adjacent to outlet of spillways had been originally designed to be 63 degrees and about 65m in height. Examination is carried out in preceding construction that it is caused to some problems possibility which of machine for slope cutting couldn't approach to the site, blasting for cutting slope might have negative influence on highway and roads nearby, and fine view along the Tae-hwa river would be eliminated. In order to establish stability of tunnel and more friendly natural environment that we are carry out detailed geological surface survey and analysis of slope stability. So, we are design and construct for tunnel excavation with possible method that it is keep up natural slope. The result of survey and analysis that natural slope was divided 3 zone(A, B, C zone). In A and B zone, in first removed floating rock, high tensile tension net is install that it prevent of release and falling of rock, in order to security during under working. In addition to, pre-stressed rock anchor is install purpose of security during tunnel excavation because of fault zone near vertical developed above excavation level. Zone C is relatively good condition of ground, design is only carry out random rock bolt. All zone are designed and constructed drainage hole for groundwater and surface water is easily drain. Desinged slpoe is harmony with near natural environment. Successfully, construction is completed.

  • PDF

Suggestion of a Modified RMR based on Effect of RMR Parameters on Tunnel Displacement in Sedimentary Rocks (퇴적암 기반 터널에서의 지질인자별 변위 영향도를 고려한 RMR 수정 제안)

  • Seo, Yong-Seok;Yim, Sung-Bin;Na, Jong-Hwa;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.197-205
    • /
    • 2008
  • Total displacement under non-reinforcement is a quantitative index of rock mass behavior during tunnel excavation and depends widely upon geological characteristics. The primary purpose of this study is to suggest a rock mass evaluation method, well representing tunnel behavior during excavation, according to rock type. A 3-D numerical analysis was carried out, with consideration of the shape of tunnel section, excavation condition and so forth, in a sedimentary rock-based tunnel, and total displacements under non-reinforcement according to rock mass class were calculated. Finally, quantification analysis was carried out to assess correlation of the total displacement with RMR parameters. As the result, a modified RMR system fer quantification of rock mass behavior during tunnel excavation is suggested.

Analysis of Geological Factors for Risk Assessment in Deep Rock Excavation in South Korea (한국의 대심도 암반 굴착 위험도 산정을 위한 인자 분석)

  • Ihm, Myeong Hyeok;Lee, Hana
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • Tunnel collapse often occurs during deep underground tunneling (> 40 m depth) in South Korea. Natural cavities as well as water supply pipes, sewer pipes, electric power cables, artificial cavities created by subway construction are complexly distributed in the artificial ground in the shallow depths of the urban area. For deep tunnel excavation, it is necessary to understand the properties of the ground which is characterized by porous elements and various geological structures, and their influence on the stability of the ground. This study analyzed geological factors for risk assessment in deep excavation in South Korea based on domestic and overseas case study. As a result, a total of 7 categories and 38 factors were derived. Factors with high weights were fault and fault clay, differential stress, rock type, groundwater and mud inrush, uniaxial compressive strength, cross-sectional area of tunnel, overburden thickness, karst and valley terrain, fold, limestone alternation, fluctuation of groundwater table, tunnel depth, dyke, RQD, joint characteristics, anisotropy, rockburst and so forth.

A Case Study on the NATM Tunnel Excavation under the Soft Soil Ground Condition by Back Analysis Method (역해석 기법에 의한 연약지반 NATM터널 굴착사례 연구)

  • JO, Hyun;PARK, Jong-In;LEE, Ki-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.71-81
    • /
    • 2000
  • For the construction of NATM tunnel, it is required a design based on the accurate soil condition from soil investigation. However, in practice, it often designs tunnels without fully understanding the condition. Especially, when soft soil comes up, or ground water breaks out suddenly on the construction, it needs to secure the stability of tunnel by appropriate reinforcing construction according to the results of measurements on field superlatively reflecting the faced situation. This report reviews the mostsuitable stability of tunnel in the construction of soft soil of tunnel by numerical analysis using FDM after re-evaluated the soil properties through back analysis using the results of measurements to simulate abruptly occurred deformation. And applying steel pipe grouting row by row on the wall and the low part of tunnel and also applying the construction method of temporary invert after excavation of the upper part of tunnel, the excavation of soft soil tunnel secured the structural stability of tunnel has been completed.

  • PDF

A comparative study on the stability evaluation of double deck tunnel in terms of excavation (대심도 복층터널에 대한 굴착 안정성 평가 비교 연구)

  • Jang, Namju;Gang, Han-gil;Kim, Kihwan;Choi, Chang-rim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.155-166
    • /
    • 2019
  • It is necessary to construct underground in the metropolis. Road traffic has reached saturation point. The city has several underground road construction projects. In abroad, double deck tunnels are planned and constructed. It is attained a high level of underground development technology. In case the double deck tunnel (2 lane) is planed instead of the bidirectional tunnel (2 lane), excavation area is similar. But tunnel width is decreased. The reduced width can cut cost for the tunnel reinforcement. This study evaluates the stability of excavation on double deck tunnel. By the assessment of the strength-stress ratio and strength reduction method, quantitative analysis is conducted between double deck tunnel and the bidirectional tunnel.

A Study on the Influence of Ground Subsidence and Stability of Buildings by Tunnel Excavation in Urban Area using Numerical Analysis and Neural Network Method (수치해석 및 인공신경망 기법을 이용한 도심지 터널 굴착에 의한 침하영향 및 연도변 건물 안정성 평가)

  • Park, Sung-Ryong;Kim, Eun-Kyum;Sa, Gong-Myung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.585-594
    • /
    • 2007
  • This paper presents the methods which estimate the influence of ground subsidence and the stability of buildings by tunnel excavation in urban area. First, we study the behaviour of ground subsidence using neural network and numerical method. And we analyze the characteristic of both methods. Using the both methods, we evaluate the stability of buildings by subway tunnel excavation and we compare the results of the neural network and numerical analysis.

  • PDF

Revisions on the payline for overbreak in Tunnel

  • Park, T.;Ahn, B.;Baek, S.;Tae, Y.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.714-715
    • /
    • 2015
  • Drill and blast method has been most widely used in tunnel excavation, after NATM (New Austrian Tunneling Method) was introduced in 1983. The NATM method utilized mass of shotcrete to secure the bearing capacity of tunnels. Overbreak defined how much larger the actual excavation was than the planned. When it became larger, more shotcrete was required to fill in it Here, payline fixed allowable overbreak, referring to payable amounts of shotcrete. Since owner was not responsible for shotcrete exceeding payline, it was important to properly establish the standards for payline. Although the standards were provided in 'Poom-sam'(standardized quantity per unit), they did not properly reflect the actual conditions for excavation. Thus, this study reviewed existing domestic and foreign standards for overbreak, and estimated overbreak for each type of support using survey data, and finally provided the improvements on the current standards.

  • PDF