• Title/Summary/Keyword: tunnel engineering

Search Result 5,042, Processing Time 0.028 seconds

Damage detection of subway tunnel lining through statistical pattern recognition

  • Yu, Hong;Zhu, Hong P.;Weng, Shun;Gao, Fei;Luo, Hui;Ai, De M.
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.231-242
    • /
    • 2018
  • Subway tunnel structure has been rapidly developed in many cities for its strong transport capacity. The model-based damage detection of subway tunnel structure is usually difficult due to the complex modeling of soil-structure interaction, the indetermination of boundary and so on. This paper proposes a new data-based method for the damage detection of subway tunnel structure. The root mean square acceleration and cross correlation function are used to derive a statistical pattern recognition algorithm for damage detection. A damage sensitive feature is proposed based on the root mean square deviations of the cross correlation functions. X-bar control charts are utilized to monitor the variation of the damage sensitive features before and after damage. The proposed algorithm is validated by the experiment of a full-scale two-rings subway tunnel lining, and damages are simulated by loosening the connection bolts of the rings. The results verify that root mean square deviation is sensitive to bolt loosening in the tunnel lining and X-bar control charts are feasible to be used in damage detection. The proposed data-based damage detection method is applicable to the online structural health monitoring system of subway tunnel lining.

Effect of tunnel fire: Analysis and remedial measures

  • Choubey, Bishwajeet;Dutta, Sekhar C.;Kumar, Virendra
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.701-709
    • /
    • 2021
  • The paper aims at improving the understanding and mitigating the effects of tunnel fires that may breakout due to the burning fuel and/or explosion within the tunnel. This study particularly focuses on the behavior of the commonly used horse shoe geometry of tunnel systems. The problem has been obtained using an adequate well-established program incorporating the Lagrangian approach. A transient-thermo-coupled static structural analysis is carried out. The effects of radiation and convection to the outer walls of the tunnel is studied. The paper also presents the impact of the hazard on the structural integrity of the tunnel. A methodology is proposed to study the tunnel fire using a model which uses equivalent steel sheet to represent the presence of reinforcements to improve the computational efficiency with adequate validation. A parametric study has been carried out and the effect of suitable lining property for mitigating the fire hazard is arrived at. Detailed analysis is done for the threshold limits of the properties of the lining material to check if it is acceptable in all aspects for the integrity of the tunnel. The study may prove useful for developing insights for ensuring tunnel fire safety. To conduct such studies experimentally are tremendously costly but are required to gain confidence. But, scaled models, as well as loading and testing conditions, cannot be studied by many trials experimentally as the cost will shoot up sharply. In this context, the results obtained from such computational studies with a feasible variation of various combinations of parameters may act as a set of guidelines to freeze the adequate combination of various parameters to conduct one or two costly experiments for confidence building.

Assessment of tunnel damage potential by ground motion using canonical correlation analysis

  • Chen, Changjian;Geng, Ping;Gu, Wenqi;Lu, Zhikai;Ren, Bainan
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.259-269
    • /
    • 2022
  • In this study, we introduce a canonical correlation analysis method to accurately assess the tunnel damage potential of ground motion. The proposed method can retain information relating to the initial variables. A total of 100 ground motion records are used as seismic inputs to analyze the dynamic response of three different profiles of tunnels under deep and shallow burial conditions. Nine commonly used ground motion parameters were selected to form the canonical variables of ground motion parameters (GMPCCA). Five structural dynamic response parameters were selected to form canonical variables of structural dynamic response parameters (DRPCCA). Canonical correlation analysis is used to maximize the correlation coefficients between GMPCCA and DRPCCA to obtain multivariate ground motion parameters that can be used to comprehensively assess the tunnel damage potential. The results indicate that the multivariate ground motion parameters used in this study exhibit good stability, making them suitable for evaluating the tunnel damage potential induced by ground motion. Among the nine selected ground motion parameters, peck ground acceleration (PGA), peck ground velocity (PGV), root-mean-square acceleration (RMSA), and spectral acceleration (Sa) have the highest contribution rates to GMPCCA and DRPCCA and the highest importance in assessing the tunnel damage potential. In contrast to univariate ground motion parameters, multivariate ground motion parameters exhibit a higher correlation with tunnel dynamic response parameters and enable accurate assessment of tunnel damage potential.

Deformation characteristics of surrounding rock in the intersection area between main tunnel and construction adit of the Xianglushan tunnel

  • Yunjuan Chen;Mengyue Liu;Fuqiang Yin;Lewen Zhang;Jing Wu;Jinrui Li
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • The construction adit plays a pivotal role in enhancing the working face during the excavation of long-distance and deep hydraulic tunnels. However, the intersection zone between the main tunnel and the construction adit exhibits more intricate deformation patterns in surrounding rock, posing a significant threat to stability during excavation. Taking the Xianglushan tunnel in Yunnan Province, China, as a case study, the FLAC3D software is employed to simulate the excavation process at the intersection. The simulation results are verified combined with the field deformation monitoring results, and the spatial distribution of tunnel rock deformation in the intersection area are analyzed. Five excavation conditions with different intersection angles are simulated, and the surrounding rock deformation of the tunnel intersection area with different intersection angles is analyzed, and its influence range is discussed. The results show that: (1) The surrounding rock deformation in the intersection area increases rapidly during the tunnel excavation. With the increase of construction distance, the deformation of intersection area is gradually stable. (2) The deformation distribution of the tunnel rock is uneven, and the deformation of main tunnel near the intersection area is larger than that far away from the intersection area. (3) With the increase of the intersection angle, the surrounding rock deformation of the tunnel intersection and its influence range decreases gradually. The research results have certain guiding significance for the construction safety of the tunnel intersection area.

Stability evaluation of a double-deck tunnel with diverging section

  • La, You-Sung;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.123-132
    • /
    • 2020
  • Due to the various restrictions and problems related to the construction of new roads in urban areas, underground road construction has been receiving a great deal of attention in the field of tunnel engineering. In this study, a double-deck road tunnel with a diverging section was analyzed for the evaluation of its stability. Both numerical analysis and scale model tests were performed, the results were used to develop a stability evaluation method for double-deck tunnels with diverging sections constructed in rocks by NATM. From regression analyses conducted on the results of the numerical analysis, an equation and a chart were derived, these tools allow us to obtain the strength/stress ratio (SSR) for double-deck road tunnels with a diverging tunnel in various diverging conditions quickly and accurately. These tools have great potential to help engineers evaluate the stability of double-deck tunnels in the preliminary design stage.

Surrounding rock pressure of shallow-buried bilateral bias tunnels under earthquake

  • Liu, Xin-Rong;Li, Dong-Liang;Wang, Jun-Bao;Wang, Zhen
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.427-445
    • /
    • 2015
  • By means of finite element numerical simulation and pseudo-static method, the shallow-buried bilateral bias twin-tube tunnel subject to horizontal and vertical seismic forces are researched. The research includes rupture angles, the failure mode of the tunnel and the distribution of surrounding rock relaxation pressure. And the analytical solution for surrounding rock relaxation pressure is derived. For such tunnels, their surrounding rock has sliding rupture planes that generally follow a "W" shape. The failure area is determined by the rupture angles. Research shows that for shallow-buried bilateral bias twin-tube tunnel under the action of seismic force, the load effect on the tunnel structure shall be studied based on the relaxation pressure induced by surrounding rock failure. The rupture angles between the left tube and the right tube are independent of the surface slope. For tunnels with surrounding rock of Grade IV, V and VI, which is of poor quality, the recommended reinforcement range for the rupture angles is provided when the seismic fortification intensity is VI, VII, VIII and IX respectively. This study is expected to provide theoretical support regarding the ground reinforcement range for the shallow-buried bilateral bias twin-tube tunnel under seismic force.

Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule

  • Yang, X.L.;Xu, J.S.;Li, Y.X.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • Employing non-associated flow rule and Power-Law failure criterion, the failure mechanisms of tunnel roof in homogeneous and layered soils are studied in present analysis. From the viewpoint of energy, limit analysis upper bound theorem and variation principle are introduced to study the influence of dilatancy on the collapse mechanism of rectangular tunnel considering effects of supporting force and seepage force. Through calculation, the collapsing curve expressions of rectangular tunnel which are excavated in homogeneous soil and layered soils respectively are derived. The accuracy of this work is verified by comparing with the existing research results. The collapsing surface shapes with different dilatancy coefficients are draw out and the influence of dilatancy coefficient on possible collapsing range is analyzed. The results show that, in homogeneous soil, the potential collapsing range decreases with the decrease of the dilatancy coefficient. In layered soils, the total height and the width on the layered position of possible collapsing block increase and the width of the falling block on tunnel roof decrease when only the upper soil's dilatancy coefficient decrease. When only the lower soil's dilatancy coefficient decrease or both layers' dilatancy coefficients decrease, the range of the potential collapsing block reduces.

A RESEARCH ON EFFECTIVE FIRE/DISASTER PROTECTION OF UTILITY TUNNEL IN KOREA

  • Park, Hung-joo;Son, Bong-sei;Jee, Nam-yong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.404-412
    • /
    • 1997
  • The pipes and cables buried below ground, which may have helped to improve city landscape, is becoming direct and indirect causes for various kinds of disaster in Korea. Every advantage from the use of utility tunnel can not be converted in a dollar since there is associated huge contribution to safe urban environment. The Korean government has a certain role to play in helping promote utility tunnels for the past years. Most recently, many utility tunnels have been being checked to find out safety level, especially fire safety level, and main problems and shortcomings are checked out as a result of this survey. Because the fire safety level of existing tunnel is low, possible approaches and solutions are presented according to the analysis of fire safety level. In order for these approaches to be effective, existing tunnel should be supplemented appropriately and extra equipment must be installed according to the solutions. Hopefully, by performing both improvement of existing utility tunnel that provide a fire/disaster proof and introducing new types of tunnel which influence utility management and maintenance, the recent disaster rate in Korea can be diminished up to a desirable rate in a near future.

  • PDF

Numerical modelling of internal blast loading on a rock tunnel

  • Zaid, Mohammad;Sadique, Md. Rehan
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.417-443
    • /
    • 2020
  • Tunnels have been an integral part of human civilization. Due to complexity in its design and structure, the stability of underground structures under extreme loading conditions has utmost importance. Increased terrorism and geo-political conflicts have forced the engineers and researchers to study the response of underground structures, especially tunnels under blast loading. The present study has been carried out to seek the response of tunnel structures under blast load using the finite element technique. The tunnel has been considered in quartzite rock of northern India. The Mohr-Coulomb constitutive model has been adopted for the elastoplastic behaviour of rock. The rock model surrounding the tunnel has dimensions of 30 m x 30 m x 35 m. Both unlined and lined (concrete) tunnel has been studied. Concrete Damage Plasticity model has been considered for the concrete lining. Four different parameters (i.e., tunnel diameter, liners thickness, overburden depth and mass of explosive) have been varied to observe the behaviour under different condition. To carry out blast analysis, Coupled-Eulerian-Lagrangian (CEL) modelling has been adopted for modelling of TNT (Trinitrotoluene) and enclosed air. JWL (Jones-Wilkins-Lee) model has been considered for TNT explosive modelling. The paper concludes that deformations in lined tunnels follow a logarithmic pattern while in unlined tunnels an exponential pattern has been observed. The stability of the tunnel has increased with an increase in overburden depth in both lined and unlined tunnels. Furthermore, the tunnel lining thickness also has a significant effect on the stability of the tunnel, but in smaller diameter tunnel, the increase in tunnel lining thickness has not much significance. The deformations in the rock tunnel have been decreased with an increase in the diameter of the tunnel.

Evaluation of Behavior of Jointed Concrete Pavement Considering Temperature Condition in a Tunnel by Finite Element Method (구조해석을 통한 터널내 줄눈 콘크리트 포장의 거동분석)

  • Ryu, Sung Woo;Park, JunYoung;Kim, HyungBae;Lee, Jaehoon;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.19-27
    • /
    • 2016
  • PURPOSES: The behavior of a concrete pavement in a tunnel was investigated, based on temperature data obtained from the field and FEM analysis. METHODS: The concrete pavement in a tunnel was evaluated via two methods. First, temperature data was collected in air and inside the concrete pavement both outside and inside the tunnel. Second, FEM analysis was used to evaluate the stress condition associated with the slab thickness, joint spacing, dowel, and rock foundation, based on temperature data from the field. RESULTS : Temperature monitoring revealed that the temperature change in the tunnel was lower and more stable than that outside the tunnel. Furthermore, the temperature difference between the top and bottom of the slab was lower inside the tunnel than outside. FEM analysis showed that, in many cases, the stress in the concrete pavement in the tunnel was lower than that outside the tunnel. CONCLUSIONS : Temperature monitoring and the behavior of the concrete pavement in the tunnel revealed that, from an environmental point of view, the condition in the tunnel is advantageous to that outside the tunnel. The behavior in the tunnel was significantly less extreme, and therefore the concrete pavement in the tunnel could be designed more economically, than that outside the tunnel.