DOI QR코드

DOI QR Code

Deformation characteristics of surrounding rock in the intersection area between main tunnel and construction adit of the Xianglushan tunnel

  • Yunjuan Chen (Key Laboratory of Building Structural Retrofitting and Underground Space Engineering (Shandong Jianzhu University), Ministry of Education) ;
  • Mengyue Liu (School of Civil Engineering, Shandong Jianzhu University) ;
  • Fuqiang Yin (Shandong Provincial Institute of Land Surveying and Mapping) ;
  • Lewen Zhang (Institute of Marine Science and Technology, Shandong University) ;
  • Jing Wu (Institute of Marine Science and Technology, Shandong University) ;
  • Jinrui Li (Institute of Marine Science and Technology, Shandong University)
  • Received : 2023.10.25
  • Accepted : 2024.06.17
  • Published : 2024.07.10

Abstract

The construction adit plays a pivotal role in enhancing the working face during the excavation of long-distance and deep hydraulic tunnels. However, the intersection zone between the main tunnel and the construction adit exhibits more intricate deformation patterns in surrounding rock, posing a significant threat to stability during excavation. Taking the Xianglushan tunnel in Yunnan Province, China, as a case study, the FLAC3D software is employed to simulate the excavation process at the intersection. The simulation results are verified combined with the field deformation monitoring results, and the spatial distribution of tunnel rock deformation in the intersection area are analyzed. Five excavation conditions with different intersection angles are simulated, and the surrounding rock deformation of the tunnel intersection area with different intersection angles is analyzed, and its influence range is discussed. The results show that: (1) The surrounding rock deformation in the intersection area increases rapidly during the tunnel excavation. With the increase of construction distance, the deformation of intersection area is gradually stable. (2) The deformation distribution of the tunnel rock is uneven, and the deformation of main tunnel near the intersection area is larger than that far away from the intersection area. (3) With the increase of the intersection angle, the surrounding rock deformation of the tunnel intersection and its influence range decreases gradually. The research results have certain guiding significance for the construction safety of the tunnel intersection area.

Keywords

Acknowledgement

We would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos.: 42172310, 51609130, 41977222, 42007234), and the Youth Innovation Technology Project of Higher School in Shandong Province (2019KJG015).

References

  1. Budarapu, P. R., Narayana, T.S.S., Rammohan, B. and Rabczuk, T. (2015), "Directionality of sound radiation from rectangular panels", Appl. Acoust., 89, 128-140. https://doi.org/10.1016/j.apacoust.2014.09.006.
  2. Budarapu, P.R., Yb, S.S., Javvaji, B. and Mahapatra, D.R. (2014), "Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium", Front. Struct. Civil Eng., 8(2), 151-159. https://doi.org/10.1007/s11709-014-0247-9.
  3. Chen, C.N. and Tseng, C.T. (2010), "2D tunneling chart from redistributed 3D principal stress path", Tunn. Undergr. Sp. Tech., 25(4), 305-314. https://doi.org/10.1016/j.tust.2010.01.003.
  4. Chen, L.A., Pei, W.W., Yang, Y.H. and Guo, W.L. (2022), "Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions", Geomech. Eng., 31(3), 237-248. https://doi.org/10.12989/gae.2022.31.3.237.
  5. Chortis, F. and Kavvadas, M. (2021), "Three-dimensional numerical analyses of perpendicular tunnel intersections", Geotech. Geol. Eng., 39, 1771-1793. https://doi.org/10.1007/s10706-020-01587-w.
  6. Dong, L., Zhong, S. and Wang, H.L. (2020), "Dynamic response characteristics of crossing tunnels under heavy-haul train loads", Geomech. Eng., 20(2), 103-112. https://doi.org/10.12989/gae.2020.20.2.103.
  7. Elkadi, A.S. and Huisman, M. (2002), "3D-GSIS geotechnical modelling of tunnel intersection in soft ground: the Second Heinenoord Tunnel, Netherlands", Tunn. Undergr. Sp. Tech., 17(4), 363-369. https://doi.org/10.1016/S0886-7798(02)00039-1.
  8. Fan, Y., Zheng, J.W., Cui, X.Z., Leng, Z., Wang, F. and Lv, C. (2021), "Damage zones induced by in situ stress unloading during excavation of diversion tunnels for the Jinping II hydropower project", Bull. Eng. Geol. Environ., 80, 4689-4715. https://doi.org/10.1007/s10064-021-02172-y.
  9. Gercek, H. (1986), "Stability considerations for underground excavation intersections", Min. Sci. Tech., 4(1), 49-57. https://doi.org/10.1016/S0167-9031(86)90194-5.
  10. Hsiao, F.Y., Wang, C.L. and Chern, J.C. (2009), "Numerical simulation of rock deformation for support design in tunnel intersection area", Tunn. Undergr. Sp. Tech., 24(1), 14-21. https://doi.org/10.1016/j.tust.2008.01.003.
  11. Jiang, Y., Zhou, H., Lu, J., Gao, Y., Zhang, C. and Chen, J. (2019), "Analysis of stress evolution characteristics during TBM excavation in deep buried tunnels", Bull. Eng. Geol. Environ., 78, 5177-5194. https://doi.org/10.1007/s10064-019-01466-6.
  12. Johnson, R.L. and Leven, M.M. (1977), "Stress-concentration factors at intersecting and closely approaching orthogonal coplanar holes", Exp. Mech., 17(1), 1-6. https://doi.org/10.1007/BF02324264.
  13. Joneidi, M., Golshani, A. and Naeimifar, I. (2019), "Progressive deformation and mechanical behaviour of intersecting tunnels in soft ground", Proceedings of the Institution of Civil Engineers-Ground Improvement, 172(4), 285-296. https://doi.org/10.1680/jgrim.18.00073.
  14. Li, X., Xue, Y., Qiu, D., Ma, X., Qu, C., Zhou, B. and Kong, F. (2021), "Application of data mining to lagging deformation prediction of the underwater shield tunnel", Mar. Georesour. Geotech., 39(2), 163-175. https://doi.org/10.1080/1064119X.2019.1681039.
  15. Li, Y., Jin, X., Lv, Z., Dong, J. and Guo, J. (2016), "Deformation and mechanical characteristics of tunnel lining in tunnel intersection between subway station tunnel and construction tunnel", Tunn. Undergr. Sp. Tech., 56, 22-33. https://doi.org/10.1016/j.tust.2016.02.016.
  16. Li, Y., Qi, T., Lei, B., Qian, W. and Li, Z. (2019), "Deformation patterns and surface settlement trough in stratified jointed rock in tunnel excavation", KSCE J. Civil Eng., 23(7), 3188-3199. https://doi.org/10.1007/s12205-019-0477-4.
  17. Liang, Z., Xue, R., Xu, N. Dong, L. and Zhang, Y. (2020), "Analysis on microseismic characteristics and stability of the access tunnel in the main powerhouse, Shuangjiangkou hydropower station, under high in situ stress", Bull. Eng. Geol. Environ., 79, 3231-3244. https://doi.org/10.1007/s10064-020-01738-6.
  18. Lin, P., Zhou, Y., Liu, H. and Wang, C. (2013), "Reinforcement design and stability analysis for large-span tailrace bifurcated tunnels with irregular geometry", Tunn. Undergr. Sp. Tech., 38, 189-204. https://doi.org/10.1016/j.tust.2013.07.011.
  19. Liu, H.L., Li, S.C., Li, L.P. and Zhang, Q.Q. (2017), "Study on deformation behavior at intersection of adit and major tunnel in railway", KSCE J. Civil Eng., 21(6), 2459-2466. https://doi.org/10.1007/s12205-017-2128-y.
  20. Liu, H., Li, P. and Liu, J. (2011), "Numerical investigation of underlying tunnel heave during a new tunnel construction", Tunn. Undergr. Sp. Tech., 26(2), 276-283. https://doi.org/10.1016/j.tust.2010.10.002.
  21. Liu, X. and Wang, Y. (2010), "Three dimensional numerical analysis of underground bifurcated tunnel", Geotech. Geol. Eng., 28(4), 447-455. https://doi.org/10.1007/s10706-010-9304-x.
  22. Luo, Y., Chen, J., Wang, H. and Sun, P. (2017), "Deformation rule and mechanical characteristics of temporary support in soil tunnel constructed by sequential excavation method", KSCE J. Civil Eng., 21(6), 2439. https://doi.org/10.1007/s12205-016-0978-3.
  23. Nawel, B. and Salah, M. (2015), "Numerical modeling of two parallel tunnels interaction using three-dimensional Finite Elements Method", Geomech. Eng., 9(6), 775-791. https://doi.org/10.12989/gae.2015.9.6.775.
  24. Riley, W.F. (1964), "Stresses at tunnel intersections", J. Eng. Mech. Division, 90(2), 167-179. https://doi.org/10.1061/JMCEA3.0000464.
  25. Shi, J.W., Wang, J.P., Ji, X.J., Liu, H.Q. and Lu, H. (2022), "Three-dimensional numerical parametric study of tunneling effects on existing pipelines", Geomech. Eng., 30(4), 383-392. https://doi.org/10.12989/gae.2022.30.4.383.
  26. Shi, J., Ng, C.W.W. and Chen, Y. (2015), "Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel", Comput. Geotech., 63, 146-158. https://doi.org/10.1016/j.compgeo.2014.09.002.
  27. Song, D., Liu, X., Chen, Z., Chen, J. and Cai, J. (2021), "Influence of tunnel excavation on the stability of a bedded rock slope: A case study on the mountainous area in Southern Anhui, China", KSCE J. Civil Eng., 25(1), 114-123. https://doi.org/10.1007/s12205-020-0831-6.
  28. Sudhir Sastry, Y.B., Budarapu, P.R., Krishna, Y. and Devaraj, S. (2014), "Studies on ballistic impact of the composite panels", Theor. Appl. Fract. Mech., 72, 2-12. https://doi.org/10.1016/j.tafmec.2014.07.010.
  29. Sudhir Sastry, Y.B., Budarapu, P.R., Madhavi, N. and Krishna, Y. (2015), "Buckling analysis of thin wall stiffened composite panels", Comput. Mater. Sci., 96, 459-471. https://doi.org/10.1016/j.commatsci.2014.06.007.