• Title/Summary/Keyword: tunnel crown settlement

Search Result 70, Processing Time 0.033 seconds

Major causes of failure and recent measurements of tunnel construction (터널시공 중 붕락발생 원인과 최신 보강기술)

  • Park, Bong-Ki;Hwang, Je-Don;Park, Chi-Myeon;Kim, Sang-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.140-153
    • /
    • 2005
  • During the tunnel construction the major failure mode can be categorized as: tunnel failure just after the tunnel excavation without support, failure after application of shotcrete and finally failure after setting the concrete lining. The failure mode just after the tunnel excavation without support, can be further classified as : bench failure, crown failure, face failure, full face failure, failure due to weak strata and failure due to overburden. Moreover the failure after application of shotcrete is classified as heading face failure, settlement of shotcrete support, local failure of shotcrete lining and invert shotcrete. To find out the major causes of tunnel collapse, the investigation was done in case of the second phase of Seoul subway construction. The investigation results depicted that the major causes of tunnel collapse were due to the weak layer of rock/fault and sudden influx of ground water from the tunnel crown. While the investigation results of the mountain road tunnels construction have shown that the major causes of tunnel failure were inadequate analysis of tunnel face mapping results, intersection of faults and limestone cavities. In this paper some recent measurement in order to mitigate such tunnel collapse are presented

  • PDF

Prediction of Preceding Crown Settlement Using Longitudinal Displacement Measured on Tunnel Face in Fault Zone (단층대가 분포하는 터널에서 굴진면 수평변위를 이용한 선행 천단변위 분석)

  • Yun, Hyun-Seok;Do, Kyung-Ryang;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.81-90
    • /
    • 2017
  • Preceding displacements in tunnel are difficult to predict since the measurements of displacements after excavation can not be performed immediately. In the present study, The longitudinal displacements which can be measured immediately after excavation are used to predict the crown settlements occurring before excavation only if fault is located at the tunnel crown. Three-dimensional finite element analysis was conducted using 28 numerical models with various fault attitudes to analyze the correlation between the longitudinal displacements on tunnel face and preceding crown settlements. The results, $L_{face}/C$ ratio show 2~12% in the drives with dip models and 2~13% in the drives against dip models individually. In addition, each model has a certain $L_{face}/C$ ratio. The result of the regression analysis show that the coefficient of determination is over 0.8 in most models. Therefore, crown settlements occurring before excavation can be predicted by analyzing the longitudinal displacements occurring on tunnel faces.

FEM Analysis on the PD-3 Tunnel Section (유한 요소법에 의한 터널해석(사례문제 2))

  • Kim, Gyo-Won;Eom, Gi-Yeong;Lee, Jae-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.108-122
    • /
    • 1991
  • For the tunnel pattern of PD-3, a numerical analysis using the FEM program, MrSoil, was conducted with given geotechnical properties of surrounding rockmasses to verify the analysis results by comparing with other programs. The analyzed domain was extended to the far enough distance from the excavation surface to avoid the restrained effect by the boundary condition, and the construction sequence was employed in the analysis as calculation steps to simulate the time dependent 3 dimentional behavior of surrounding ground due to tunneling. Maximum 35 mm of the tunnel crown settlement and about 13 mm of the surface settlement were computed and the amount of settlement may not give any structural damage on the concrete structures on the ground surface. The shotcrete stress of 84 kg/cm2 and the rockbolt axial force of 9 ton as a maximum are within the allowable limit. The plastic zone was restricted near the excavation surface, but forepoling around the crown may be required to prevent rock falling. It is believed that the tunnel is designed reasonablely from the economical and safety points of view.

  • PDF

Semi Variance Measurement on Tunnel using 3D Laser Scanning (3차원 레이저 측량기를 이용한 터널 변위 관측)

  • Lee, Jae-One;Kim, Yong-Suk;Song, Youn-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • There are many risks in constructing tunnel-structure. To prevent these risks from occurring and secure safety, the precise and rapid survey of inside displacement of the tunnel is required. But nowadays the measurement of the crown settlement, convergency, and surface settlement depends on general kinds of method which use total station or level. In the way to provide data about maintaining structure according to recent improvement and progress of measuring technology, 3D laser scanning is used. It solves the problem of reliability in measuring displacement of existing structure, provides material that enables to estimate shape change of structure visually, and makes it possible to deliberate speedy countermeasure. By this three dimensioning it is possible to make efficient use of structure maintenance and field measurement.

  • PDF

Assessment of Tunnel Displacement with Weak Zone Orientation using 3-D Numerical Analysis (3차원 수치해석을 이용한 연약대 방향에 따른 터널 거동 특성 평가)

  • Yim, Sung-Bin;Jeong, Hae-Geun;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • A 3-D numerical analysis was carried out to observe potential effects of orientation of inherent weak zones to tunnel behaviors and stress distributions during tunnel excavation. Weak zones used for the analysis were placed at the upper 1D part from crown, on the crown and on the center of face, using orientations derived from the 6th RMR parameter for assessment of joint orientation effect on tunnel. Mechanical properties of rock mass were derived through a in-situ displacement measurement-based back analysis. Finally, a classification chart for crown settlement with five ranks based on orientation and location of weak zones is suggested.

A Case Study on Design and Construction of Subway Tunnels Underneath Existing Buildings (건물하부 통과를 위한 터널설계 시공사례)

  • 김홍석;조성태
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.225-230
    • /
    • 1994
  • This paper concerns a case study on the design concept, analysis, construction methodology of a subway tunnel excavated in the soft ground beneath an existing building where the distance between the bottom of the building and the crown of the tunnel is separated by about 3 meters only. The silot tunnels are excavated in advance, and side reinforced-concrete walls are installed. Then, main tunnels are excavated with ring cut method. The steel ribs are installed and supported by the side walls made in advance. Between the steel ribs and the side walls, the screw jack is installed to apply prestressing so that settlement can be controlled at minimum. Various in-situ seasurements are made and compared with computed values obtained by numerical methods. By choosing this underpinning method with very caraful construction control, tunnelling projects could be finished successfully without having any damage to the building located very closely to the tunnel crown.

  • PDF

Deformation Analysis of Shallow Tunnel Using Tunnel Model Test and Computational Analysis (모형시험과 수치해석을 이용한 저토피 터널의 변형거동에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in shallow tunnel design and construction in urban area. For deformation analysis of shallow tunnel due to excavation it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigaties quantitatively the deformation behavior of shallow tunneling by model tunnel test and strain softening analysis Incorporating the reduction of shear stiffness and strength parameters. The comparison of model tunnel test result and numerical simulation using strain softening analysis showed good agreement in crown settlement, normalized subsidence settlement and developing shear bands above tunnel shoulder. In this study, it is blown that the strain softening modeling is applicable to the nonlinear deformation analysis of shallow tunnel.

A Study on the Estimation Method of Rock Load Applied to Concrete Lining Using Back Analysis (역해석을 이용한 콘크리트라이닝 지반 이완하중 산정방법 연구)

  • Park, Ki Hwan;Shin, Young Wan;Kim, Jung Joo;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1957-1968
    • /
    • 2013
  • Design criteria for rock load on tunnel concrete lining has not been established yet. Generally rock load on tunnel concrete lining is empirically estimated, which leads to a conservative design. Ordinary estimation method of rock load includes various problems. Estimating by numerical analysis is very complicated and has not been verified with field measurements. Therefore, it is necessary to conduct a study on practical method of estimating rock load which is more accurate to the real rock load on tunnel concrete lining. This study, presents estimation method of rock load on tunnel concrete lining. Crown settlement of the tunnel construction site has been measured and it was been back analyzed to estimate the rock load. The rock load was estimated to be smaller compare to the ordinary estimation method.

Ground Behavior and Reinforcing Methods of NATM Tunnel through Deep Weathered Zone (대심도 풍화대층에서 NATM 터널의 지반거동 및 보강방법)

  • Chun, Byung-Sik;Song, Seung-Hoon;An, Jung-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.87-95
    • /
    • 2007
  • This study analyzed ground settlement and ground stress depending on tunnel excavation and the ground reinforcing grouting methods for double line road tunnel through deep weathered zone. Diameter of double line road tunnel was approximately 12m and umbrella arch method and side wall reinforcing grouting were applied. The ring-cut split excavation method and CD-cut excavation method for excavation method were applied. Analyses of failure rate and vertical stress ratio show that the tunnel for which the height of the cover (H) was higher than four times the diameter, can be considered a deep tunnel. Comparisons of various excavation and ground reinforcement methods showed that CD-cut method results in lower surface and crown settlement, and lower failure rate than that obtained by Ring-cut split method. In addition, the side wall reinforcing grouting resulted in reduction of tunnel displacement and settlement.

A Study on the Ground Movement around Tunnel Reinforced by Umbralla Arch Method (Umbrella Arch 공법에 의한 터널 천단부 보강시 주변 지반의 거동에 관한 연구)

  • 배규진;김창용;문홍득;훙성완
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.299-309
    • /
    • 1997
  • Soil and rock improvement and reinforcement techniques are applied to achieve safe tunnel excavation in difficult geological conditions. The Umbrella Arch Method(UAM), one of the auxiliary techniques, is used to reduce ground permeability and improve stabtility of the tunnel by inserting a series of steel pipes into ground around the crown inclined to the longitudinal axis of the tunnel. Additionally, multi-step grouting is added through the steel pipes. UAM combines the advantages of a modern forepoling system with the grouting injection method. This technique has been applied in subway, road and utility tunneling sites for the last few years in Korea. This paper presents the results of analysis of the case studies on ground movements associated with UAM used in the Seoul Subway line 5 constructon site. Improvement of tunnel stability and decrease of ground settlement expected with pipe insertion are also discussed. Finally, the method to minimize ground settlements caused by NATM tunnelling are suggested.

  • PDF