• Title/Summary/Keyword: tunnel cross section

Search Result 209, Processing Time 0.018 seconds

A Numerical Study on Safety According to the Excavation Step for Large Cross Section Tunnel (대단면 터널굴착에 있어서 굴착순서에 따른 수치해석적 안정성 검토)

  • Jung, Hee-sun;Yoon, Ji-sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.335-341
    • /
    • 2005
  • In construction of a large cross section NATM tunnel, to keep the tunnel face stability by the ground itself bench cut method is commonly used. In order to necessity of partial face excavation method, we have to look for more enhanced method that can maintain better stress intensity. This paper presents a stress distribution of the Center Diaphragm Method from the partial face excavation methods, with the numerical analysis, and induced the optimal face distance, which is minimizing stress concentration and the optimal excavation step. Commerical 3 dimensional continuum analyzing FLAC-3D Ver. 2.1 program is used for the analysis. Analyses were performed to investigate ground behavior for tunnels with variable bench-length varying from 2m to 40m.

  • PDF

A study on evacuation characteristic by cross-sectional areas and smoke control velocity at railway tunnel fire (철도터널 화재시 단면적별 제연풍속에 따른 대피특성 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Kim, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.215-226
    • /
    • 2015
  • In this study, with variables the cross section area ($97m^2$, $58m^2$, $38m^2$) and the wind velocity(0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 m/s), the time of getting off train dependent on the way of itself and the width of the evacuation route was analyzed, and also fire and evacuation characteristics is reviewed by cross section area of each wind velocity. As the result, if cross section become smaller, the density of harmful gases in the tunnel increased more than the ratio of decreasing cross section area. In the case of small cross sectional area, the surrounding environment from initial fire is indicated to exceed the limit criteria suggested in performance based design. In the analysis of effective evacuation time for evacuation characteristics, the effective evacuation time was the shortest in the case of evaluating effective evacuation time by the visibility. Also, there was significant difference between the effective evacuation time on the basis of performance based evaluation and the effective evacuation time obtained by analyzing FED (Fractional effective dose), one of the analysis method obtaining the point that deaths occur, against harmful gases.

The study on interval calculation of cross passage in undersea tunnel by quantitative risk assesment method (해저철도터널(목포-제주간) 화재시 정량적 위험도 평가기법에 의한 피난연결통로 적정간격산정에 관한 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • Quantitative Mokpo-Jeju undersea tunnel is currently on the basis plan for reviewing validation. As for the cross section shape for express boat of 105 km line, sing track two tube is being reviewed as the Euro tunnel equipped with service tunnel. Also, 10 carriage trains have been planned to operate 76 times for one way a day. So, in this study, quantitative risk assessment method is settled, which is intended to review the optimal space between evacuation connection hall of tunnel by quantitative risk analysis method. In addition to this, optimal evacuation connection hall space is calculated by the types of cross section, which are Type 3 (double track single tube), Type 1 (sing track two tube), and Type 2 (separating double track on tube with partition). As a result, cross section of Type 2 is most efficient for securing evacuation safety, and the evacuation connection space is required for 350 m in Type 1, 400 m in Type 2, and 1,500 m in Type3 to satisfy current domestic social risk assessment standard.

Modelling for TBM Performance Prediction (TBM 굴진성능 예측을 위한 모델링)

  • 이석원;최순욱
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.413-420
    • /
    • 2003
  • Modelling for performance prediction of mechanical excavation is discussed in this paper. Two of the most successful performance prediction models, namely theoretical based CSM model and empirical based NTH model, are discussed and compared. The basic principles of rock cutting with disc cutters, especially Constant Cross Section cutters, are discussed and a theoretical model developed is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting geometry. General modelling logic for the performance prediction of mechanical excavation is introduced. CSM computer model developed and currently used at the Earth Mechanics Institute(EMI) of the Colorado School of Mines is discussed. Example of input and output of this model is illustrated for the typical operation by Tunnel Boring Machine(TBM).

Dead Pressure and its measures of Emulsion Explosives at Small Sectional Tunnel (소단면 터널에서 에멀젼폭약의 사압현상과 대책)

  • Min, Hyung-Dong;Jeong, Min-Su;Jin, Yeon-Ho;Park, Yun-Suk
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In general, the size of tunnel cross section in construction site is $50{\sim}200m^2$. But, electric cable tunnel, telecommunication cable tunnel, mine tunnel. Waterproof tunnel have small cross section less than $20m^2$. There are so many problem at small sectional tunnel: restriction of equipment, dead pressure by precompression, loss of efficiency, increase of work time. Especially, explosives remainder by precompression of previous detonation is serious problem. To find its measures of dead pressure (explosives remainder), the following series of progress have been conducted: (1) survey of previous study (2) investigate causes of dead pressure (3) set up of its measures (4) application and appraisal at tunnel site. The measures, change of cut pattern, hole space over 40cm, adjustment of delay time, are proved by experimental results.

The influence of vehicles on the flutter stability of a long-span suspension bridge

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Zhang, Jianren;Chen, Suren;He, Xuhui
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.275-292
    • /
    • 2015
  • The presence of traffic on a slender long-span bridge deck will modify the cross-section profile of the bridge, which may influence the flutter derivatives and in turn, the critical flutter wind velocity of the bridge. Studies on the influence of vehicles on the flutter derivatives and the critical flutter wind velocity of bridges are rather rare as compared to the investigations on the coupled buffeting vibration of the wind-vehicle-bridge system. A typical streamlined cross-section for long-span bridges is adopted for both experimental and analytical studies. The scaled bridge section model with vehicle models distributed on the bridge deck considering different traffic flow scenarios has been tested in the wind tunnel. The flutter derivatives of the modified bridge cross section have been identified using forced vibration method and the results suggest that the influence of vehicles on the flutter derivatives of the typical streamlined cross-section cannot be ignored. Based on the identified flutter derivatives, the influence of vehicles on the flutter stability of the bridge is investigated. The results show that the effect of vehicles on the flutter wind velocity is obvious.

Section enlargement by reinforcement of shotcrete lining on the side wall of operating road tunnel (운영중인 도로터널의 측벽하부 숏크리트 보강에 의한 단면확대)

  • Kim, Dong-Gyou;Shin, Young-Wan;Shin, Young-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.637-652
    • /
    • 2012
  • The protector with the shape of '${\sqcap}$' in cross section can be set up in the tunnel, which can be constructed for enlargement of cross section, to keep traffic flow in the tunnel. It is impossible to install the rockbolt in the side wall of tunnel due to a limited space between the protector and cutting surface of side wall. The objective of this study is to suggest the optimum thickness of shotcrete lining without rockbolt on the side wall and to evaluate the stability of tunnel enlarged. Numerical analysis was performed to evaluate the displacement at the center of tunnel, the convergence of tunnel, and the stress in shotcrete lining in 4-lane NATM road tunnel enlarged from 3-lane NATM road tunnel. The vertical displacement at the center of tunnel and the convergence of crown in the tunnel with rockbolt in the side wall were almost similar to those in the tunnel without rockbolt in the side wall. The convergence of bench/invert and the stress in shotcrete lining without rockbolt on the side wall were greater maximum 0.57 mm and 1,300 kN/$m^2$ than those with rockbolt in the side wall. The increased convergence and the stress in shotcrete lining can be reduced in incerasing of thickness of shotcrete lining about 20% (5 cm) of standard thickness, 25 cm, of shotcrete lining.

Effects of frequency ratio on bridge aerodynamics determined by free-decay sectional model tests

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • A series of wind tunnel free-decay sectional model dynamic tests were conducted to examine the effects of torsional-to-vertical natural frequency ratio of 2DOF bridge dynamic systems on the aerodynamic and dynamic properties of bridge decks. The natural frequency ratios tested were around 2.2:1 and 1.2:1 respectively, with the fundamental vertical natural frequency of the system held constant for all the tests. Three 2.9 m long twin-deck bridge sectional models, with a zero, 16% (intermediate gap) and 35% (large gap) gap-to-width ratio, respectively, were tested to determine whether the effects of frequency ratio are dependent on bridge deck cross-section shapes. The results of wind tunnel tests suggest that for the model with a zero gap-width, a model to approximate a thin flat plate, the flutter derivatives, and consequently the aerodynamic forces, are relatively independent of the torsional-to-vertical frequency ratio for a relatively large range of reduced wind velocities, while for the models with an intermediate gap-width (around 16%) and a large gap-width (around 35%), some of the flutter derivatives, and therefore the aerodynamic forces, are evidently dependent on the frequency ratio for most of the tested reduced velocities. A comparison of the modal damping ratios also suggests that the torsional damping ratio is much more sensitive to the frequency ratio, especially for the two models with nonzero gap (16% and 35% gap-width). The test results clearly show that the effects of the frequency ratio on the flutter derivatives and the aerodynamic forces were dependent on the aerodynamic cross-section shape of the bridge deck.

A 3-DOF forced vibration system for time-domain aeroelastic parameter identification

  • Sauder, Heather Scot;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.481-500
    • /
    • 2017
  • A novel three-degree-of-freedom (DOF) forced vibration system has been developed for identification of aeroelastic (self-excited) load parameters used in time-domain response analysis of wind-excited flexible structures. This system is capable of forcing sinusoidal motions on a section model of a structure that is used in wind tunnel aeroelastic studies along all three degrees of freedom - along-wind, cross-wind, and torsional - simultaneously or in any combination thereof. It utilizes three linear actuators to force vibrations at a consistent frequency but varying amplitudes between the three. This system was designed to identify all the parameters, namely, aeroelastic- damping and stiffness that appear in self-excited (motion-dependent) load formulation either in time-domain (rational functions) or frequency-domain (flutter derivatives). Relatively large displacements (at low frequencies) can be generated by the system, if required. Results from three experiments, airfoil, streamlined bridge deck and a bluff-shaped bridge deck, are presented to demonstrate the functionality and robustness of the system and its applicability to multiple cross-section types. The system will allow routine identification of aeroelastic parameters through wind tunnel tests that can be used to predict response of flexible structures in extreme and transient wind conditions.

Flow characteristics after water inrush from the working face in karst tunneling

  • Wu, J.;Li, S.C.;Xu, Z.H.;Pan, D.D.;He, S.J.
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.407-419
    • /
    • 2018
  • In order to investigate flow characteristics after water inrush from the working face in process of karst tunnel construction, numerical calculation for two class case studies of water inrush is carried out by using the FLUENT software on the background of Qiyueshan tunnel. For each class water inrush from the tunnel face, five cases under different water-inrush velocity are simulated and researched. Three probing lines are selected respectively in the left tunnel, cross passage, right tunnel and in the height direction of the tunnel centerline. The variation characteristics of velocity and pressure on each probing line under the five water-inrush velocities are analyzed. As for the selected four groups probing lines in the tunnels, the change rules of velocity and pressure on each group probing lines under the same water-inrush velocity are discussed. Finally, the water flow characteristics after inrush from the tunnel face are summarized by comparing the case studies. The results indicate that: (1) The velocity and pressure change greatly at the intersection area of the cross passage and the tunnels. (2) The velocity nearby the tunnel side wall is the minimum, while it is the maximum in the middle position. (3) The pressure value of every cross section in the tunnels is basically fixed. (4) As water-inrush velocity increases, the flow velocity and pressure in the tunnels also increase. The former is approximately proportional to their respective water-inrush velocity, while the latter is not. The research results provide a theoretical basis for making scientific and rational escape routes.