• Title/Summary/Keyword: tunnel cross section

Search Result 209, Processing Time 0.02 seconds

Design of DC-DC Converter to Charge and Discharge Ultra-Capacitor Modules for Wireless Trains (무가선 전동차용 울트라커패시터 모듈 충·방전을 위한 DC-DC 컨버터 설계)

  • Jo, Jeong-Min;Han, Young-Jae;Kim, Jae-Won;Lee, Jang-Moo;Kim, Gil-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1776-1781
    • /
    • 2015
  • Electric power trains receive electric power from overhead cables via a pantograph system. Power collector system in trains increase the cross section of tunnel and require a massive coreless filter reactor in propulsion inverter because of the power disturbance by contact loss phenomenon of a train. In this paper we proposed a wireless train which can run to next station with charging energy of ultra-capacitor module block. We designed DC-DC converter to charge and discharge ultra-capacitor modules by using Next Train running test results and confirm the feasibility of the proposed system through simulation.

Conceptual Design of Fighter-class Aircraft Using Integrated Commercial Tools (통합된 상용 툴을 이용한 전투기급 항공기 개념설계)

  • Lee, Sung-Jin;Nam, Hwa Jin;Park, Young Keun;O, Jangwhan;Lee, Dae Yearl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.189-196
    • /
    • 2014
  • Automated design program using commercial process integration and optimization program was developed for conceptual design of fighter-class aircraft. Wind tunnel test data and performance analysis results were compared for the verification of analysis tool of this program, and the usefulness of the tool was found. After integration with radar cross section analysis tool, the correlation with configuration design variables of wing, tail and performance parameters was identified by design of experiment, and the optimized configuration for weight and RCS was derived from optimization of empty weight and average frontal RCS value. After parameter definition of fuselage, the program can be implemented for full aircraft configuration.

An experimental study on the flow separation characteristics of a paraglider canopy (패러글라이더 캐노피의 유동박리 특성에 대한 실험적 연구)

  • Shin, Jeonghan;Chae, Seokbong;Shin, Yisu;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.69-76
    • /
    • 2020
  • In the present study, we investigate the flow separation characteristics of a paraglider canopy model by tuft visualization. The experiment is conducted at Re = 3.3×105 in a wind tunnel large enough to contain the three-dimensional paraglider canopy model, where Re is Reynolds number based on the mean chord length and the free-stream velocity. The flow separation characteristics of the canopy model near the wing root are similar to those of a two-dimensional airfoil with a cross-section similar to the model. On the other hand, near the wingtip region, the flow separation is suppressed by the downwash induced by the wingtip vortex. As a result, as the angle of attack increases, the flow separation occurs from the wing root region of the canopy model and develops toward the wingtip.

Quasi-steady three-degrees-of-freedom aerodynamic model of inclined/yawed prisms: Formulation and instability for galloping and static divergence

  • Cristoforo Demartino;Zhen Sun;Giulia Matteoni;Christos T. Georgakis
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.57-78
    • /
    • 2023
  • In this study, a generalized three-degree-of-freedom (3-DoF) analytical model is formulated to predict linear aerodynamic instabilities of a prism under quasi-steady (QS) conditions. The prism is assumed to possess a generic cross-section exposed to turbulent wind flow. The 3-DoFs encompass two orthogonal horizontal directions and rotation about the prism body axis. Inertial coupling is considered to account for the non-coincidence of the mass center and the rotation center. The aerodynamic force coefficients-drag, lift, and moment-depend on the Reynolds number based on relative flow velocity, angle of attack, and the angle between the wind and the cable. Aerodynamic forces are linearized with respect to the static equilibrium configuration and mean wind velocity. Routh-Hurwitz and Liénard and Chipart criteria are used in the eigenvalue problem, yielding an analytical solution for instabilities in galloping and static divergence types. Additionally, the minimum structural damping and stiffness required to prevent these instabilities are numerically determined. The proposed 3-DoF instability model is subsequently applied to a conductor with ice accretion and a full-scale dry inclined cable. In comparison to existing models, the developed model demonstrates superior prediction accuracy for unstable regions compared with results in wind tunnel tests.

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

Study on the Applicability of Reflection Method using Ultrasonic Sweep Source for the Inspection of Tunnel Lining Structure - Physical Modeling Approach - (터널 지보구조 진단을 위한 초음파 스윕 발생원의 반사법 응용 가능성 연구 - 모형실험을 중심으로 -)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.167-174
    • /
    • 2001
  • Reflection method using ultrasonic source has been attempted to obtain the information about tunnel lining structures composed of lining, shotcrete, water barrier and voids at the back of lining. In this work, two different types of sources, i.e. single-pulse source and sweep source, can be used. Single-pulse source with short time duration has the frequency content whose amplitudes tend to be concentrated around the dominant frequency, whereas sweep source with long time duration denotes a flat distribution of relatively larger amplitude over a broad frequency band, although the peak to peak amplitude of single-pulse source wavelet is equivalent to that of sweep source one. In traditional seismic application, a single-pulse source(weight drop, dynamite) is typically used. However, to investigate the fine structure, as it is the case in the tunnel lining structure, the sweep wavelet can be also a desirable source waveform primarily due to the higher energy over a broad frequency band. For the investigation purposes of sweep source, a physical modeling is a useful tool, especially to study problems of wave propagation in the fine layered media. The main purpose of this work was using a physical modeling technique to explore the applicability of sweep source to the delineation of inner layer boundaries. To this end, a two-dimensional physical model analogous to the lining structure was built and a special ultrasonic sweep source was devised. The measurements were carried out in the sweep frequency range 10 ∼ 60 KHz, as peformed in the regular reflection survey(e.g. roll-along technique). The measured data were further rearranged with a proper software (cross-correlation). The resulting seismograms(raw data) showed quitely similar features to those from a single-pulse source, in which high frequency content of reflection events could be considerably emphasized, as expected. The data were further processed by using a regular data processing system "FOCUS" and the results(stack section) were well associated with the known model structure. In this context, it is worthy to note that in view of measuring condition the sweep source would be applied to benefit the penetration of high frequency energy into the media and to enhance the resolution of reflection events.

  • PDF

A study on the structural safety of middle slab in double deck tunnel under live loads (활하중에 대한 복층터널 슬래브의 구조적 안전성에 관한 연구)

  • Kim, Tae Kyun;Kim, Se Kwon;Kim, Hyun Jun;Kim, Chang Young;Yoo, Wan Kyu;Hwang, Sung-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The purpose of this study is to analyze in advance the problems and improvements that may occur during the construction of intermediate slabs and the loading of intermediate slabs through the preliminary structural safety evaluation of intermediate slabs for Test bed structures in deep depth tunnels. The Test bed construction can verify and confirm the results of the design and construction technology development of large depth double deck tunnel through the process, and can also be used as a learning site for engineers and the general public to speed up the time of underground space development. There will be an opportunity to do this. In particular, the design load of middle slab built inside the circular deep-depth double-sided tunnel cross-section varies depending on the construction method and the construction equipment load used. Class 3 truck load of KL-510 assumed to be common load to upper and middle slab during loading and installation is loaded on upper and lower slab with different working position for each load combination Analyzed.

Performance Evaluation of High Strength Lattice Girder by Structural Analyses and Field Measurements (구조해석과 현장계측에 의한 고강도 격자지보재의 성능 평가)

  • Lee, Jeo-Won;Min, Kyong-Nam;Jeong, Ji-Wook;Roh, Byoung-Kuk;Lee, Sang-Jin;Ahn, Tae-Bong;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • This study examined structural analysis of supports in tunnel and displacement and underground stress of tunnel by measurement, in order to evaluate the performance of high-strength lattice girders developed as a substitute for H-profiles. According to the three-dimensional nonlinear structural analysis results of the tunnel support, the load and displacement relationship between the H-profiles and the high-strength lattice girders showed almost the same behavior, and the maximum load of the high-strength lattice girders were 1.0 to 1.2 times greater than the H-profiles. By the results of the three-dimensional tunnel cross-section analysis of the supports, the axial force was occurred largely in the lower left and right sides of the tunnel, and showed a similar trend to the field test values. In the results of the measurement of the roof settlement and rod extension, the final displacement of the steel arch rib (H-profile) and high-strength lattice girder section in tunnel was converged to a constant value without significant difference within the first management standard of 23.5 mm. According to the results of underground displacement measurement, the final change amount of the two support sections showed a slight displacement change, but converged to a constant value within the first management standard of 10 mm. By the results of measurement of shotcrete stress and steel arch rib stress, the final change amount of the two support sections showed a slight stress change, but converged to a constant value within the first management standard of 81.1 kg/㎠ and 54.2 tonf.

Pilot Test of Grid-Type Underground Space Considering Underground Complex Plant Operation (지하 복합플랜트 운영 중 확장을 고려한 격자형 지하공간 파일럿 테스트)

  • Chulho Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.472-482
    • /
    • 2023
  • The grid-type or room-and-pillar method is applied for the purpose of mining horizontally buried minerals. In this study, design and pilot test were performed to apply the room-and-pillar method which uses natural rock as a rock pillar to the construction of underground space. The area where the pilot test was conducted was in stone mine and had good rock conditions with an appropriate depth (about 30 m) to apply the pilot test. The pilot test site was selected by reviewing accessibility and ground conditions and then site construction was performed through detailed ground investigation and design. The pilot test was designed with a column shape of 8×8 m and a cross-section of 8×12 m. The blasting pattern was determined through test blasting at the site, and blasting of 3 m excavation with 89 holes was performed. Through field observations, the average width of 12.5 m and the average height of 8.3 m were measured. Therefore, it is possible to proceed similar to the cross-sectional shape considered in the design.

Performance evaluation of high-performance lattice girder using numerical analysis (수치해석을 통한 고성능 격자지보재의 성능 평가)

  • Kim, Dong-Gyou;Ahn, Sungyoull
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.897-908
    • /
    • 2019
  • The objective of this study is to evaluate the field support performance of highperformance lattice girder (BK-Lattice Girder) by using numerical analysis. Three types (50, 70, 95-type) of existing and high performance lattice girders were applied to the cross section of highway 2, 3, and 4 lane tunnels to compare the supporting performance. The numerical analysis was the finite element method and the lattice girder was modeled in three dimensions with an elasto-plastic frame. The ground was modeled as a spring receiving only compression. The load was applied as a concentrated load on the central ceiling of the tunnel section. The yield strengths of the lattice girders were determined from the numerical results to compare the supporting performance of lattice girder. In case of 50-type, the yield strengths of high-performance lattice girders were increased by 6.7~10.0% compared with those of the existing lattice girders. In the case of 70-type, the high-performance lattice girders increased yield strengths by 12.1~14.9% than the existing lattice girder. In the case of 95-type, the high-performance lattice girders increased yield strengths by 13.3~20.0% than the existing lattice girder. As a result of numerical analysis, it was considered that the high-performance lattice girder supported better than the existing lattice girder when only the lattice girders were constructed.