• 제목/요약/키워드: tuning rule

검색결과 125건 처리시간 0.02초

Fuzzy Rule Based Trajectory Control of Mobile Robot (이동용 로봇의 퍼지 기반 추적 제어)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;Choi, Hyeung-Sik;Park, Han-Il;Jang, Ha-Lyong;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.109-115
    • /
    • 2010
  • This paper deals with trajectory control of computer simulated mobile robot via fuzzy control. Mobile robot is controlled by Mamdani type fuzzy controller. Inputs of the fuzzy controller are angle between mobil robot and target, changed angle and output is the steering angle, which is control input. Fuzzy rules have seven rules and are selected by human experiential knowledge. Also we propose a scaling factors tuning scheme which is the another focus in designing fuzzy controller. In this paper, we adapt the RCGA which is well known in parameter optimization to adjust scaling factors. The simulation results show that the fuzzy control effectively realize trajectory stabilization of the mobile robot along a given reference target from various initial steering angles.

A Study on Generation of Customized ICC Profile for Color Vision Deficiencies (색각이상자를 위한 맞춤형 ICC 프로파일 생성에 관한 연구)

  • Choi, Hoon-Il;Hong, Sung-Woong;Jang, Young-Gun
    • The KIPS Transactions:PartB
    • /
    • 제15B권2호
    • /
    • pp.113-122
    • /
    • 2008
  • While there are about 1 million color vision deficiencies in Korea, an assistive technology to digital contents of broadcasting and web for them remains scarce. In this study, we developed a generation method of the ICC profile to correct a graphic digital content adapted to various color perception characteristics of CVD by tuning the correction rules of the ICC profile by themselves. We tested the performance of the ICC profile to apply 10 Ishihara plates to the participants, 1 protanomaly, 1 protanomaly and deuteranomaly and 2 deuteranomaly. We used the color range information to build correction rules. Results of the test show that they passed Ishihara test by 97.5% success rate, compared to 20% success rate without it. The average time for them to spend to tune the customized ICC profile was about 13 minute without any diagnosis of specialist, any special instrument.

Design of Fuzzy Digital PID Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 퍼지 디지털 PID 제어기의 설계)

  • Chai, Chang-Hyun
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • 제36C권12호
    • /
    • pp.69-77
    • /
    • 1999
  • This paper describes the design of fuzzy digital PID controller using simplified indirect inference method. First, the fuzzy digital PID controller is derived from the conventional continuous time linear digital PID controller. Then the fuzzification, control-rule base, and defuzzification using SIM in the design of the fuzzy digital controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional digital PID controller, which has the same linear structure, but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

Development of a New Personal Magnetic Field Exposure Estimation Method for Use in Epidemiological EMF Surveys among Children under 17 Years of Age

  • Yang, Kwang-Ho;Ju, Mun-No;Myung, Sung-Ho;Shin, Koo-Yong;Hwang, Gi-Hyun;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.376-383
    • /
    • 2012
  • A number of scientific researches are currently being conducted on the potential health hazards of power frequency electric and magnetic field (EMF). There exists a non-objective and psychological belief that they are harmful, although no scientific and objective proof of such exists. This possible health risk from ELF magnetic field (MF) exposure, especially for children under 17 years of age, is currently one of Korea's most highly contested social issues. Therefore, to assess the magnetic field exposure levels of those children in their general living environments, the personal MF exposure levels of 436 subjects were measured for about 6 years using government funding. Using the measured database, estimation formulas were developed to predict personal MF exposure levels. These formulas can serve as valuable tools in estimating 24-hour personal MF exposure levels without directly measuring the exposure. Three types of estimation formulas were developed by applying evolutionary computation methods such as genetic algorithm (GA) and genetic programming (GP). After tuning the database, the final three formulas with the smallest estimation error were selected, where the target estimation error was approximately 0.03 ${\mu}T$. The seven parameters of each of these three formulas are gender (G), age (A), house type (H), house size (HS), distance between the subject's residence and a power line (RD), power line voltage class (KV), and the usage conditions of electric appliances (RULE).

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF