• 제목/요약/키워드: tuned vibration control

검색결과 272건 처리시간 0.026초

진동대를 이용한 TLD와 MTLD의 성능실험에 대한 분석 (An Analysis on Performance Test of TLD and MTLD Using Shaking Table)

  • 유장열;송창현;유기표;김영문
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.139-144
    • /
    • 2008
  • 본 논문은 건물의 형태와 동적특성을 변화시키지 않고 건물에 부가질량을 설치하여 건물의 진동을 제어하는 방법중 수동형 제진장치인 TLD(tuned liquid damper)와 MTLD(multiple tuned liquid damper)의 진동응답을 감소시키기 위해 진동대를 이용한 성능실험을 실시하였다. 따라서 기존의 형태별(원형, 직사각형) TLD 실험의 실험 데이터를 가지고 가진 진폭(1mm, 3mm, 5mm, 10mm, 20mm) 의 변화에 따른 고유진동수(0.44Hz, 0.55Hz)에 대한 MTLD의 형태별 실험을 통하여 TLD와 MTLD의 진동감소효과에 대한 성능실험을 비교 분석 하였다.

  • PDF

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

Experimental study on the effect of EC-TMD on the vibration control of plant structure of PSPPs

  • Zhong, Tengfei;Feng, Xin;Zhang, Yu;Zhou, Jing
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.457-473
    • /
    • 2022
  • A high-frequency vibration control method is proposed in this paper for Pumped Storage Power Plants (PSPPs) using Eddy Current Tuned Mass Damper (EC-TMD), based on which a new type of EC-TMD device is designed. The eddy current damper parameters are optimized by numerical simulation. On this basis, physical simulation model tests are conducted to compare and study the effect of structural performance with and without damping, different control strategies, and different arrangement positions of TMD. The test results show that EC-TMD can effectively reduce the control effect under high-frequency vibration of the plant structure, and after the additional damping device forms EC-TMD, the energy dissipation is further realized due to the intervention of eddy current damping, and the control effect is subsequently improved. The Multi-Tuned Mass Damper (MTMD) control strategy broadens the tuning band to improve the robustness of the system, and the vibration advantage is more obvious. Also, some suggestions are made for the placement of the dampers to promote their application.

A semi-active smart tuned mass damper for drive shaft

  • 채교초;박정헌;이철희;박정률;윤동영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.349-354
    • /
    • 2011
  • Tuned mass damper is widely used in many applications of industry. The main advantage of tuned mass damper is that it can increase the damping ratio of system and reduce the vibration amplitude. Meanwhile, the natural frequency of system will be divided by two peaks, and the peak speeds are closely related to the mass and the stiffness of auxiliary mass system added. In addition, the damping ratio will also affect the peak frequency of the dynamic response. In the present research, the nonlinear mechanical characteristics of rubber is investigated and put into use, since it is usually manufactured as the spring element of tuned mass damper. By the sense of the nonlinear stiffness as well as the damping ratio which can be changed by preload applied on, the shape memory alloy is proposed to control the auxiliary mass system by self-optimizing. Supported by the experiment data of rubber, the 1 DOF theoretical model and finite element model based on computer simulation are implemented to perform the feasibility of the proposed semi-active tuned mass damper working on the drive shaft.

  • PDF

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

Tuned Mass Damper(TMD)를 이용한 보도교의 진동제어에 대한 연구 (Study on the Vibration Control of Footbridge by Using Tuned Mass Damper(TMD))

  • 권영록;최광규
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.9-15
    • /
    • 2003
  • 본 연구는 기존 보도교의 TMD를 이용한 진동제어에 대해 기술한 논문이다. 본 연구의 대상인 보도교는 단순 강 박스형 교량이고 주 경간이 47.7m이다. 교량의 중량은 11.17kN/m이고, 매우 작은 감쇠율을 갖고 있으며, 1차 고유진동수가 1.84Hz이다. 이 진동수는 인간의 보행 진동수인 2Hz와 근접하고 있다. 따라서 보행자의 보행에 피해 불안정한 공진진동이 자주 발생하였다. 본 연구에서는 이와 같은 보행자로 인한 보행 진동을 억제하기 위하여 TMD를 이용한 진동대책에 대해 기술한 논문이고, 진동대책에서 경제성과 시공성을 고려하여 보도교의 난간에 설치하는 소형의 TMD에 대해 기술하고 있다. TMD 설치 이후의 현장실험과 수치해석으로부터 보도교의 구조감쇠가 TMD 설치 이전의 감쇠율보다 약 13배 증가되었고 공진 진동이 거의 억제되었음을 확인하였다.

TLD와 MTLD을 이용한 고층건물의 풍응답 진동제어 (Vibration Control of Wind Response of Tall Building Using TLD and MTLD)

  • 유기표;고낙호;김영문
    • 한국공간구조학회논문집
    • /
    • 제5권1호
    • /
    • pp.73-80
    • /
    • 2005
  • Serviceability of buildings is affect by excessive acceleration experienced at the top floors in wind storms that may cause discomfort to the occupants. Tuned liquid damper(TLD) and multiple tuned liquid damper(MTLD) are passive control devices that consists of rigid tank filled with liquid to suppress the vibration of structures. This TLD and MTLD are attributable to several potential advantages - low costs; easy to install in existing structures; effective even for small-amplitude vibrations. In this paper, the behavior of TLD and MTLD are investigated analytically and wind tunnel test of high-frequency force balance.

  • PDF

Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications

  • Zijie Zhou;Zhuangning Xie;Lele Zhang
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.91-103
    • /
    • 2023
  • Tuned liquid dampers (TLDs) are increasingly being used as efficient dynamic vibration absorbers to mitigate wind-induced vibration in super high-rise buildings. However, the damping characteristics of screens and the control effectiveness of actual structures must be investigated to improve the reliability of TLDs in engineering applications. In this study, a numerical TLD model is developed using computational fluid dynamics (CFD) and a simulation method for achieving the coupled vibration of the structure and TLD is proposed. The numerical results are verified using shaking table tests, and the effects of the solidity ratio and screen position on the TLD damping ratios are investigated. The TLD control effectiveness is obtained by simulating the wind-induced vibration response of a full-scale structure-TLD system to determine the optimal screen solidity ratio. The effects of the structural frequency, damping ratio, and wind load amplitude on the TLD performance are further analyzed. The TLD damping ratio increases nonlinearly with the solidity ratio, and it increases with the screens towards the tank center and then decreases slightly owing to the hydrodynamic interaction between screens. Full-scale coupled simulations demonstrated that the optimal TLD control effectiveness was achieved when the solidity ratio was 0.46. In addition, structural frequency shifts can significantly weaken the TLD performance. The control effectiveness decreases with an increase in the structural damping ratio, and is insensitive to the wind load amplitude within a certain range, implying that the TLD has a stable damping performance over a range of wind speed variations.

An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers

  • Lu, Zheng;Wang, Dianchao;Masri, Sami F.;Lu, Xilin
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.93-115
    • /
    • 2016
  • A particle tuned mass damper (PTMD) system is the combination of a traditional tuned mass damper (TMD) and a particle damper (PD). This paper presents the results of an experimental and analytical study of the damping performance of a PTMD attached to the top of a benchmark model under wind load excitation. The length ratio of the test model is 1:200. The vibration reduction laws of the system were explored by changing some system parameters (including the particle material, total auxiliary mass ratio, the mass ratio between container and particles, the suspending length, and wind velocity). An appropriate analytical solution based on the concept of an equivalent single-unit impact damper is presented. Comparison between the experimental and analytical results shows that, with the proper use of the equivalent method, reasonably accurate estimates of the dynamic response of a primary system under wind load excitation can be obtained. The experimental and simulation results show the robustness of the new damper and indicate that the damping performance can be improved by controlling the particle density, increasing the amount of particles, and aggravating the impact of particles etc.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.