• Title/Summary/Keyword: tuned mass damper

Search Result 326, Processing Time 0.031 seconds

Study on the Application of Tuned Pendulum Slab Damper system (TPSD) to Building structure (진자슬래브에 의한 진동제어시스템의 적용성 평가)

  • Kim, Yang-Jung;Seo, Gun-Bae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.181-184
    • /
    • 2012
  • The Tuned Pendulum Slab Damper(TPSD)system is mainly composed of suspended pendulum slab which was hanging with cable wire from the top floor of building without any extra loads structurally, and can be helpful to reduce vibration with effect of tuned mass damper function by the principle of pendulum movement. The experiment was performed with miniatures of the 30stories of steel structure building by the forced vibration test using shaking table, and the result was reduced about 42% of vibration. The purpose of this study was to make analysis of application of the TPSD system to new building and exist building against strong wind or seismic wave. The result of this study was that the TPSD system shall be satisfactory in field of execution, process control, safety and economical efficiency with saving up to 70% of construction cost.

  • PDF

Design Parameter of a New Type Bi-directional Damper Using a Tuned Liquid Column Damper and a Tuned Sloshing Damper (TLCD와 TSD를 이용한 새로운 형태의 양방향 감쇠기 설계변수)

  • Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.850-856
    • /
    • 2009
  • A new type bi-directional damper using a tuned liquid column damper(TLCD) and a tuned sloshing damper(TSD) is introduced in this study. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with one damper. One of objectives of this study is to derive analytical dynamics to investigate coupled effects due to TLCD and TSD. Another objective is to address the effect of coupled control force due to TLCD and TSD on the dynamic characteristic of the damper based on analytical dynamics. Shaking table test is undertaken to experimentally grasp dynamic characteristics of the damper under white noise excitation. Its dynamic characteristic is expressed by the transfer function from the shaking table acceleration to the control force generated from the damper. Finally, its design parameters are identified based on the coupled dynamics, which include the mass ratio of horizontal liquid column to total liquid for a TLCD, the participation factor of the fundamental liquid sloshing for a TSD and damping ratio for both cases.

On the use of tuned mass dampers to suppress vortex shedding induced vibrations

  • Strommen, Einar;Hjorth-Hansen, Erik
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.19-30
    • /
    • 2001
  • This paper concerns computational response predictions when a tuned mass damper is intended to be used for the suppression of vortex shedding induced vibrations of e.g., a bridge deck. A general frequency domain theory is presented and its application is exemplified on a suspension bridge (where vortex shedding vibrations have been observed and where such an installation is a possible solution). Relevant load data are taken from previous wind tunnel tests. In particular, the displacement response statistics of the tuned mass damper as well as the bridge deck are obtained from time domain simulations, showing that after the installation of a TMD peak factors between three and four should be expected.

A Study on Control Performance of Tuned Liquid Damper (동조액체감쇠기의 진동제어 성능연구)

  • Woo, Sung-Sik;Woo, Woon-Taek;Chung, Lan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.536-543
    • /
    • 2005
  • This paper presents the results of experimental investigations on the response control performance of tuned liquid damper(TLD). Steel frame building model is used for the experiments. Shaking table is controled by velocity consol. Experimental variables are mass ratios(${\mu}=mass$ of TLD/mass of structure), shape ratio(depth of water/ length of TLD), number of nets(N) and tuned frequency ratio($f_l/f_s$). Results show that the greater the mass ratio is, the better the control performance is. So, it can be concluded that TLD is able to be used as a device of vibration control in the remodeling of existing buildings that are not designed to resist earthquake

  • PDF

Design of Tuned Mass Damper and Hybrid Tuned Mass Damper for a 76-story Benchmark Building to Alleviate Wind Response (76층 벤치마크 건물의 풍응답 제어를 위한 TMD 및 HTMD 설계)

  • Min, Kyung-Won;Park, Ji-Hoon;Kim, Hong-Jin;Kim, Hyung-Sub;Jung, Ran
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.541-548
    • /
    • 2003
  • The design and performance of HTMD(hybrid tuned mass dampers) are evaluated for the response control of a md excited 76-story benchmark building. When a HTMD utilizes active control forces, the optimally designed TMD (Tuned Mass Damper) generates the modal separation at the first natural frequency resulting in difficulties for applying active control forces additionally. Whereas, the modal separation does no occur if the un is designed with the non-optimally designed TMD is used. Therefore, the response control performance of the HTMD with a non-optimally designed TMD is better that one with an optimally designed TMD. Further, the non-optimally designed TMD has an advantage of smaller stroke than the optimally designed TMD relieving the difficulty of limited strokes.

  • PDF

Seismic response control of irregular asymmetric structure with voided slabs by distributed tuned rotary mass damper devices

  • Shujin Li;Irakoze Jean Paula;Ling Mao
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.455-467
    • /
    • 2023
  • This study focuses on demonstrating the effectiveness of vibration control of tuned rotary mass damper (TRMD) for reducing the bidirectional and torsional response of the irregular asymmetric structure with voided slabs under earthquake excitations. The TRMD arranged in plane of one-story eccentric structure is proposed as a distributed tuned rotary mass damper (DTRMD) system. Lagrange's equation is used to derive the equations of motion of the controlled system. The optimum position and number of TRMD are numerically investigated under harmonic excitation and the control effects of different distributions are discussed. Furthermore, a shaking table test is conducted under different excitation cases, including free vibration, forced vibration and seismic wave to investigate the absorption performance of the device. The numerical simulations of different distributions of the TRMDs show that the DTRMDs are more effective in reduction of the displacement response of the asymmetric structure under the same mass ratio, even when the degree of eccentricity becomes large. However, with small degree of eccentricity, the unreasonable asymmetrical arrangement may cause the increase of the peak value of the rotational angular displacement. Finally, the experimental investigations exhibit similar results of translational displacement of the structure. It is concluded that the vibration of the irregular asymmetric structure can be controlled more economically and effectively by reducing the mass ratio through reducing the quantity of TRMDs at the high stiffness end.

The efficiency and robustness of a uni-directional tuned liquid damper and modelling with an equivalent TMD

  • Tait, M.J.;Isyumov, N.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.235-250
    • /
    • 2004
  • The current study reports the results of an experimental program conducted on a structure fitted with a liquid damper (TLD) and subjected to harmonic excitation. Screens were placed inside the TLD to achieve the required inherent damping. In the first part of the study, reduced scale models of the building-TLD systems were tested under two levels of excitation. The efficiency of the damper was assessed by evaluating the effective damping provided to the structure and comparing it to the optimum effective damping value, provided by a linear tuned mass damper (TMD). An extensive parametric study was then conducted for one of the three models by varying both the excitation amplitude and the tuning ratio, defined as the ratio of the TLD sloshing frequency to the natural frequency of the structure. The effectiveness and robustness of a TLD with screens were assessed. Results indicate that the TLD can be tuned to achieve a robust performance and that its efficiency is not significantly affected by the level of excitation. Finally, the equivalent amplitude dependent TMD model, developed in the companion paper is validated using the system test results.

Vibration Control of Tall Buildings using Multiple Tuned Mass Dampers (복수의 TMD를 이용한 고층건물의 진동조절)

  • 민경원;홍성목
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.26-29
    • /
    • 1992
  • Modern tall buildings are subject to wind induced oscillations. Those oscillations can cause discomfort to the occupants. To control these motions, tuned mass dampers have been used. In this paper, component node synthesis, based on Lagrange multipliers formulation. is applied to the along-wind motion of tall buildings with multiple tuned mass dampers. Spectral densities of accelerations of top floor are compared by changing the numbers and locations of tuned mass dampers. It is found that multiple tuned mass dampers can be more effective than single tuned mass damper in reducing the acceleration response.

  • PDF

Comparative Study of Tuned Mass Damper and Tuned Liquid Column Damper for Response Control of Building structures (동조질량감쇠기와 동조액체기둥감쇠기의 건물응답의 제어성능 비교연구)

  • 김홍진;김형섭;민경원;오정근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.427-434
    • /
    • 2003
  • In this study, the control performances of Tuned Mass Damper (TMD) and Tuned Liquid Column Damper (TLCD) are evaluated and compared for seismically excited structures. Results show that TLCD is more effective than TMD for interstory drift control while TLCD is as effective as TMD for acceleration control. In special, it is shown that interstory drifts are maximally controlled in lower floors and accelerations are reduced most in upper floors. This indicates that TLCD is an effective controller for earthquake-induced structures in terms of structural safety as well as serviceability.

  • PDF