• Title/Summary/Keyword: tumor therapy target

Search Result 292, Processing Time 0.017 seconds

Preliminary Results of Stereotactic Radiosurgery Using Stereotactic Body Frame (정위 체부 고정틀을 이용한 체부 방사선수술의 예비적 결과)

  • Ahn Seung Do;Yi Byong Yong;Choi Eun Kyung;Kim Jong Hoo;Nho Young Ju;Shin Kyung Hwan;Kim Kyoung Ju;Chung Won Kyun;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.251-256
    • /
    • 2000
  • Purpose : To evaluate efficacy and complication of stereotactic radiosurgery using stereotactic body frame. Methods and Materials :From December 1997 to June 1999, 11 patients with primary and metastatic tumors were treated with stereotactic radiosurgery using stereotactic body frame(Precision TherapyTu). Three patients were treated with primary hepatoma and seven with metastatic tumor from liver, lung, breast, trachea and one with arteriovenous malformation on neck. We used vacuum pillow for immobilization and made skin marker on sternum and tibia area with chest marker and leg marker. Diaphragm control was used for reducing movement by respiration. CT-simulation and treatment planning were peformed. Set-up error was checked by CT-Simulator before each treatment. Dose were calculated on the 80$\~$90$\%$ isodose of isocenter dose and given consecutive 3 fractions for total dose of 30 Gy (10 Gy/fraction). Results :Median follow-up was 12 months. One patient (9$\%$) showed complete response and four Patients (36$\%$) showed partial response and others showed stable disease. Planning target volumes (PTV) ranged from 3 to 111 cc (mean 18.4 n). Set-up error was within 5 mm in all directions (X, Y, Z axis). There was no complication in all patients. Conclusion :In Primary and metastatic tumors, stereotactic body frame is very safe, accurate and effective treatment modality.

  • PDF

Evaluation of Setup Uncertainty on the CTV Dose and Setup Margin Using Monte Carlo Simulation (몬테칼로 전산모사를 이용한 셋업오차가 임상표적체적에 전달되는 선량과 셋업마진에 대하여 미치는 영향 평가)

  • Cho, Il-Sung;Kwark, Jung-Won;Cho, Byung-Chul;Kim, Jong-Hoon;Ahn, Seung-Do;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.81-90
    • /
    • 2012
  • The effect of setup uncertainties on CTV dose and the correlation between setup uncertainties and setup margin were evaluated by Monte Carlo based numerical simulation. Patient specific information of IMRT treatment plan for rectal cancer designed on the VARIAN Eclipse planning system was utilized for the Monte Carlo simulation program including the planned dose distribution and tumor volume information of a rectal cancer patient. The simulation program was developed for the purpose of the study on Linux environment using open source packages, GNU C++ and ROOT data analysis framework. All misalignments of patient setup were assumed to follow the central limit theorem. Thus systematic and random errors were generated according to the gaussian statistics with a given standard deviation as simulation input parameter. After the setup error simulations, the change of dose in CTV volume was analyzed with the simulation result. In order to verify the conventional margin recipe, the correlation between setup error and setup margin was compared with the margin formula developed on three dimensional conformal radiation therapy. The simulation was performed total 2,000 times for each simulation input of systematic and random errors independently. The size of standard deviation for generating patient setup errors was changed from 1 mm to 10 mm with 1 mm step. In case for the systematic error the minimum dose on CTV $D_{min}^{stat{\cdot}}$ was decreased from 100.4 to 72.50% and the mean dose $\bar{D}_{syst{\cdot}}$ was decreased from 100.45% to 97.88%. However the standard deviation of dose distribution in CTV volume was increased from 0.02% to 3.33%. The effect of random error gave the same result of a reduction of mean and minimum dose to CTV volume. It was found that the minimum dose on CTV volume $D_{min}^{rand{\cdot}}$ was reduced from 100.45% to 94.80% and the mean dose to CTV $\bar{D}_{rand{\cdot}}$ was decreased from 100.46% to 97.87%. Like systematic error, the standard deviation of CTV dose ${\Delta}D_{rand}$ was increased from 0.01% to 0.63%. After calculating a size of margin for each systematic and random error the "population ratio" was introduced and applied to verify margin recipe. It was found that the conventional margin formula satisfy margin object on IMRT treatment for rectal cancer. It is considered that the developed Monte-carlo based simulation program might be useful to study for patient setup error and dose coverage in CTV volume due to variations of margin size and setup error.