• 제목/요약/키워드: tumor response

검색결과 1,391건 처리시간 0.029초

Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Yan, Yan;Sun, Bin;Wang, Ying;Tang, Lin;Wang, Enze;Yu Jia;Nogoy, Kim Margarette Corpuz;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.934-953
    • /
    • 2021
  • Ciglitazone is a member of the thiazolidinedione family, and specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. We hypothesized that ciglitazone as a PPARγ ligand in the absence of an adipocyte differentiation cocktail would increase adiponectin and adipogenic gene expression in bovine satellite cells (BSC). Muscle-derived BSCs were isolated from six, 18-month-old Yanbian Yellow Cattle. The BSC were cultured for 96 h in differentiation medium containing 5 µM ciglitazone (CL), 10 µM ciglitazone (CM), or 20 µM ciglitazone (CH). Control (CON) BSC were cultured only in a differentiation medium (containing 2% horse serum). The presence of myogenin, desmin, and paired box 7 (Pax7) proteins was confirmed in the BSC by immunofluorescence staining. The CL, CM, and CH treatments produced higher concentrations of triacylglycerol and lipid droplet accumulation in myotubes than those of the CON treatment. Ciglitazone treatments significantly increased the relative expression of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, fatty acid synthase, stearoyl-CoA desaturase, and perilipin 2. Ciglitazone treatments increased gene expression of Pax3 and Pax7 and decreased expression of myogenic differentiation-1, myogenin, myogenic regulatory factor-5, and myogenin-4 (p < 0.01). Adiponectin concentration caused by ciglitazone treatments was significantly greater than CON (p < 0.01). RNA sequencing showed that 281 differentially expressed genes (DEGs) were found in the treatments of ciglitazone. DEGs gene ontology (GO) analysis showed that the top 10 GO enrichment significantly changed the biological processes such as protein trimerization, negative regulation of cell proliferation, adipocytes differentiation, and cellular response to external stimulus. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DEGs were involved in the p53 signaling pathway, PPAR signaling pathway, biosynthesis of amino acids, tumor necrosis factor signaling pathway, non-alcoholic fatty liver disease, PI3K-Akt signaling pathway, and Wnt signaling pathway. These results indicate that ciglitazone acts as PPARγ agonist, effectively increases the adiponectin concentration and adipogenic gene expression, and stimulates the conversion of BSC to adipocyte-like cells in the absence of adipocyte differentiation cocktail.

해조류 유래 Fucoidan의 어류용 백신 항원보조제로서의 가능성에 대한 고찰 (Potential of Fucoidan Extracted from Seaweeds as an Adjuvant for Fish Vaccine)

  • 민은영;김광일;조미영;정승희;한현자
    • 한국해양생명과학회지
    • /
    • 제4권1호
    • /
    • pp.1-13
    • /
    • 2019
  • Fucoidan(후코이단)은 주로 갈조류에서 추출되는 fucose를 함유한 함황 다당류의 일종으로, 항균, 항바이러스 및 항종양 효과와 함께 다양한 경로로 면역력을 향상시키는 생리 기능성물질로 알려져 있다. 최근 연구에 따르면, 인체 백신 분야에서는 fucoidan의 백신 adjuvant(항원보조제)로서의 가능성이 제시되었다. 수산업 분야에서는, 보조사료로서의 fucoidan의 기능에 관한 연구는 보고되고 있으나, 수산용 백신 개발을 위한 adjuvant 연구는 전무한 실정이다. 동물세포에서 fucoidan의 adjuvant에 대한 긍정적인 검토와 함께 안전성을 증명한 연구는 많이 있지만, fucoidan을 어류 백신용 adjuvant로 사용하기 위해서는 어류에서도 이를 확인할 필요가 있다. 또한 fucoidan의 분자량에 따라 세포 내 흡수율이 각기 다르다는 점과 병원체의 인위감염에 따른 항체 생성을 포함한 어류의 특이면역 반응 시스템에 대한 연구가 많이 부족하다는 제약이 있다. 따라서 이러한 분야에 대한 적극적인 연구가 뒷받침 된다면 안전하고 효과적인 adjuvant로 사용할 수 있을 것이다. 본 연구에서는 fucoidan이 사람과 동물을 포함하여 어류의 면역자극 즉 체액성 및 세포성 면역에 미치는 영향에 대한 연구를 검토하고, 수산업 분야에서 fucoidan의 사용과 어류 백신용 adjuvant로서의 가능성을 고찰하였다.

Dexamethasone Facilitates NF-κB Signal Pathway in TNF-α Stimulated Rotator Cuff Tenocytes

  • Ji, Jong-Hun;Kim, Young-Yul;Patel, Kaushal;Cho, Namjoon;Park, Sang-Eun;Ko, Myung-Sup;Park, Suk-Jae;Kim, Jong Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.297-303
    • /
    • 2019
  • Corticosteroids are commonly used for pain control in rotator cuff tear. Deregulated $NF-{\kappa}B$ activation is a hallmark of chronic inflammatory diseases and has been responsible for the pathogenesis of rotator cuff tear. The Dexamethasone(DEXA) is a synthetic corticosteroid. The purpose of this study was to examine the exact effect of dexamethasone on $NF-{\kappa}B$ signaling in rotator cuff tear. We measured $NF-{\kappa}B$ expression in four groups: control, $TNF-{\alpha}$-treated, DEXA-treated, and combined treatment with $TNF-{\alpha}$ and DEXA. Tenocytes were isolated from patients with rotator cuff tears and pre-incubated with $TNF-{\alpha}$ (10 ng/ml), DEXA ($1{\mu}M$), or both of them for 10 min, 1 h, and 2 h. Expression of p65, p50, and p52 in the nuclei and cytosol was analyzed by western blotting and immunofluorescence imaging using confocal microscopy. We also evaluated nucleus/cytosol (N/C) ratios of p65, p50, and p52. In our study, the combined treatment with DEXA and $TNF-{\alpha}$ showed increased N/C ratios of p65, p50, and p52 compared with those in the $TNF-{\alpha}$ group at all time points. Additionally, in the DEXA group, N/C ratios of p65, p50, and p52 gradually increased from 10 min to 2 h. In conclusion, DEXA promoted the nuclear localization of p65, p50, and p52, but was not effective in inhibiting the inflammatory response of $TNF-{\alpha}$-stimulated rotator cuff tear.

Inflammatory Effect of Light-Emitting Diodes Curing Light Irradiation on Raw264.7 Macrophage

  • Jeong, Moon-Jin;Kil, Ki-Sung;Lee, Myoung-Hwa;Lee, Seung-Yeon;Lee, Hye-Jin;Lim, Do-Seon;Jeong, Soon-Jeong
    • 치위생과학회지
    • /
    • 제19권2호
    • /
    • pp.133-140
    • /
    • 2019
  • Background: The light-emitting diode (LED) curing light used is presumed to be safe. However, the scientific basis for this is unclear, and the safety of LED curing light is still controversial. The purpose of this study was to investigate the effect of LED curing light irradiation according to the conditions applied for the polymerization of composite resins in dental clinic on the cell viability and inflammatory response in Raw264.7 macrophages and to confirm the stability of LED curing light. Methods: Cell viability and cell morphology of Raw264.7 macrophages treated with 100 ng/ml of lipopolysaccharide (LPS) or/and LED curing light with a wavelength of 440~490 nm for 20 seconds were confirmed by methylthiazolydiphenyl-tetrazolium bromide assay and microscopic observation. The production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) was confirmed by NO assay and $PGE_2$ enzyme-linked immunosorbent assay kit. Expression of interleukin $(IL)-1{\beta}$ and tumor necrosis factor $(TNF)-{\alpha}$ in total RNA and protein was confirmed by reverse transcription polymerase chain reaction and Western blot analysis. Results: The LED curing light did not affect the viability and morphology of normal Raw264.7 cells but affected the cell viability and induced cytotoxicity in the inflammation-induced Raw264.7 cells by LPS. The irradiation of the LED curing light did not progress to the inflammatory state in the inflammation-induced Raw264.7 macrophage. However, LED curing light irradiation in normal Raw264.7 cells induced an increase in NO and $PGE_2$ production and mRNA and protein expression of $(IL)-1{\beta}$ and $(TNF)-{\alpha}$, indicating that it is possible to induce the inflammatory state. Conclusion: The irradiation of LED curing light in RAW264.7 macrophage may induce an excessive inflammatory reaction and damage oral tissues. Therefore, it is necessary to limit the long-term irradiation which is inappropriate when applying LED curing light in a dental clinic.

유방암 세포 주 MCF-7에서의 녹차 추출물이 p53 경로에 미치는 영향 (Effects of Green Tea Extract on the p53 Pathway in the MCF-7 Breast Cancer Cell Line)

  • 곽인석
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1316-1320
    • /
    • 2018
  • 녹차(GT) 추출물의 효과를 인간 유방암 유래 세포인 MCF-7 세포를 사용하여 조사 하였다. GT추출물의 세포 독성 효과를 MTT 방법을 사용하여 관찰한 결과, MCF-7 세포는 현저한 세포 독성 효과를 보였고, 이 독성 효과는 GT추출물 농도 의존적으로 증가하였다. p53과 관련 단백질인 p21/cip1과 CDK2의 연관성을 조사하기 위해 GT추출물 처리 후 웨스턴 분석법을 통해 이들 단백질의 발현을 조사하였다. GT추출물 처리 후, MCF-7 세포에서 p53 단백질의 양은 농도에 따라 현저하게 증가 하였다. p21/cip1 단백질의 발현은 낮은 농도의 GT추출물에서 증가되며, 고농도에서도 감소하지 않았다. 그러나 CDK2의 단백질의 양은 높은 농도의 GT추출물에서 CDK2 발현의 급격한 감소가 관찰되었다. 이 결과는 GT추출물의 처리는 MCF-7 세포에서 p53와 p21/cip1를 증가시켜, 그 결과로 활성화 된 p21/cip1는 CDK2의 발현을 억제 함을 나타내고 있다. GT추출물이 MCF-7 세포의 세포주기에 어떤 영향을 미치는지 확인하기 위하여 FACS 분석으로 관찰한 결과, MCF-7 세포에서 세포주기의 G1 단계가 점차 증가하는 결과를 보였다. 이 결과는 GT추출물의 유방암 세포에서의 항암 효과는 세포주기의 G1 단계에서 MCF-7 세포를 정지시키는 p53에 의해 조절된다는 사실을 명확하게 보여 주고 있다.

Inhibition of MicroRNA-15a/16 Expression Alleviates Neuropathic Pain Development through Upregulation of G Protein-Coupled Receptor Kinase 2

  • Li, Tao;Wan, Yingchun;Sun, Lijuan;Tao, Shoujun;Chen, Peng;Liu, Caihua;Wang, Ke;Zhou, Changyu;Zhao, Guoqing
    • Biomolecules & Therapeutics
    • /
    • 제27권4호
    • /
    • pp.414-422
    • /
    • 2019
  • There is accumulating evidence that microRNAs are emerging as pivotal regulators in the development and progression of neuropathic pain. MicroRNA-15a/16 (miR-15a/16) have been reported to play an important role in various diseases and inflammation response processes. However, whether miR-15a/16 participates in the regulation of neuroinflammation and neuropathic pain development remains unknown. In this study, we established a mouse model of neuropathic pain by chronic constriction injury (CCI) of the sciatic nerves. Our results showed that both miR-15a and miR-16 expression was significantly upregulated in the spinal cord of CCI rats. Downregulation of the expression of miR-15a and miR-16 by intrathecal injection of a specific inhibitor significantly attenuated the mechanical allodynia and thermal hyperalgesia of CCI rats. Furthermore, inhibition of miR-15a and miR-16 downregulated the expression of interleukin-$1{\beta}$ and tumor-necrosis factor-${\alpha}$ in the spinal cord of CCI rats. Bioinformatic analysis predicted that G protein-coupled receptor kinase 2 (GRK2), an important regulator in neuropathic pain and inflammation, was a potential target gene of miR-15a and miR-16. Inhibition of miR-15a and miR-16 markedly increased the expression of GRK2 while downregulating the activation of p38 mitogen-activated protein kinase and $NF-{\kappa}B$ in CCI rats. Notably, the silencing of GRK2 significantly reversed the inhibitory effects of miR-15a/16 inhibition in neuropathic pain. In conclusion, our results suggest that inhibition of miR-15a/16 expression alleviates neuropathic pain development by targeting GRK2. These findings provide novel insights into the molecular pathogenesis of neuropathic pain and suggest potential therapeutic targets for preventing neuropathic pain development.

Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae

  • Ji, Seon Yeong;Cha, Hee-Jae;Molagoda, Ilandarage Menu Neelaka;Kim, Min Yeong;Kim, So Young;Hwangbo, Hyun;Lee, Hyesook;Kim, Gi-Young;Kim, Do-Hyung;Hyun, Jin Won;Kim, Heui-Soo;Kim, Suhkmann;Jin, Cheng-Yun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.685-696
    • /
    • 2021
  • In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.

Identification and quantification of oleanane triterpenoid saponins and potential analgesic and anti-inflammatory activities from the roots and rhizomes of Panax stipuleanatus

  • Shu, Pan-Pan;Li, Lu-Xi;He, Qin-Min;Pan, Jun;Li, Xiao-Lei;Zhu, Min;Yang, Ye;Qu, Yuan
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.305-315
    • /
    • 2021
  • Background: Panax stipuleanatus represents a folk medicine for treatment of inflammation. However, lack of experimental data does not confirm its function. This article aims to investigate the analgesic and anti-inflammatory activities of triterpenoid saponins isolated from P. stipuleanatus. Methods: The chemical characterization of P. stipuleanatus allowed the identification and quantitation of two major compounds. Analgesic effects of triterpenoid saponins were evaluated in two models of thermal- and chemical-stimulated acute pain. Anti-inflammatory effects of triterpenoid saponins were also evaluated using four models of acetic acid-induced vascular permeability, xylene-induced ear edema, carrageenan-induced paw edema, and cotton pellet-induced granuloma in mice. Results: Two triterpenoid saponins of stipuleanosides R1 (SP-R1) and R2 (SP-R2) were isolated and identified from P. stipuleanatus. The results showed that SP-R1 and SP-R2 significantly increased the latency time to thermal pain in the hot plate test and reduced the writhing response in the acetic acid-induced writhing test. SP-R1 and SP-R2 caused a significant decrease in vascular permeability, ear edema, paw edema, and granuloma formation in inflammatory models. Further studies showed that the levels of inflammatory mediators, nitric oxide, malondialdehyde, tumor necrosis factor-α, and interleukin 6 in paw tissues were downregulated by SP-R1 and SP-R2. In addition, the rational harvest of three- to five-year-old P. stipuleanatus was preferable to obtain a higher level of triterpenoid saponins. SP-R2 showed the highest content in P. stipuleanatus, which had potential as a chemical marker for quality control of P. stipuleanatus. Conclusion: This study provides important basic information about utilization of P. stipuleanatus resources for production of active triterpenoid saponins.

CsPbBr3을 기반으로 한 Perovskite 선량계의 방사선치료 Quality Assurance에 대한 적용가능성 평가 (Evaluation of Applicability of Perovskite Dosimeter based on CsPbBr3 Material to Quality Assurance in Radiation Therapy)

  • 양승우;박성광
    • 한국방사선학회논문지
    • /
    • 제16권3호
    • /
    • pp.211-216
    • /
    • 2022
  • 방사선치료에서는 정상조직에 대한 피해를 최소화하면서도 종양조직을 죽이기 위하여 정확한 정도관리 품질보증이 요구된다. 이를 위해서 치료 방사선을 정확하게 계측할 수 있는 선량계가 요구된다. 본 연구에서는 기존 사용되는 검출기 재료로 사용되는 물질보다 저렴하고 제조 공정이 간단하여 기존 물질들을 대체할 수 있는 페로브스카이트 물질에 제조단가를 낮출 수 있고 공정을 간소화 시킬 수 있는 particle in binder(PIB) 방법을 적용하여 민감도가 높은 고효율의 방사선 선량계를 개발하고자 하였다. 고에너지 광자선에 대한 반응특성을 평가함으로써 방사선치료분야에 정도관리 품질보증선량계로 적용 가능한지 적용가능성을 평가하였다. 재현성 평가 결과, 6 MV 에너지에서의 RSD 1.178%로 제시되었고 15 MV에너지에서는 1.141%로 제시되었다. 선형회귀분석에 따른 선형성 평가결과, 6 MV, 15 MV 에너지 각 조건에서 0.9999의 R2값을 제시하였다. 재현성, 선형성 평가결과를 바탕으로 제작된 CsPbBr3 선량계의 치료방사선 분야에 정도관리 품질보증 선량계로의 적용가능성이 높은 것으로 나타났다. 본 연구에서 제작된 CsPbBr3 선량계는 재현성, 선형성 평가에서 기준이상의 성능을 제시하였으며, 개선을 통하여 치료방사선 정도관리 품질보증 선량계로 활용 가능한 것으로 판단된다.

Dexmedetomidine and LPS co-treatment attenuates inflammatory response on WISH cells via inhibition of p38/NF-kB signaling pathway

  • Kim, Tae-Sung;Yoon, Ji-Young;Kim, Cheul-Hong;Choi, Eun-Ji;Kim, Yeon Ha;Kim, Eun-Jung
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제22권4호
    • /
    • pp.277-287
    • /
    • 2022
  • Background: Inflammatory dental diseases that occur during pregnancy can cause preterm labor and/or intrauterine growth restriction. Therefore, proactive treatment of dental diseases is necessary during pregnancy. Dexmedetomidine (DEX) is a widely used sedative in the dental field, but research on the effect of DEX on pregnancy is currently insufficient. In this study, we investigated the effects of co-treatment with DEX and lipopolysaccharide (LPS) on inflammatory responses in human amnion-derived WISH cells. Methods: Human amnion-derived WISH cells were treated with 0.001, 0.01, 0.1, and 1 ㎍/mL DEX with 1 ㎍/mL LPS for 24 h. Cytotoxicity of WISH cells was evaluated by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), p38, and nuclear factor kappa B (NF-𝜅B) was examined by western blot analysis. The mRNA expression of pro-inflammatory cytokines such as interleukin (IL)-1𝛽 and tumor necrosis factor (TNF)-𝛼 was analyzed by real-time quantitative polymerase chain reaction. Results: Co-treatment with DEX and LPS showed no cytotoxicity in the WISH cells. The mRNA expression of IL-1𝛽 and TNF-𝛼 decreased after co-treatment with DEX and LPS. DEX and LPS co-treatment decreased the protein expression of COX-2, PGE2, phospho-p38, and phospho-NF-𝛋B in WISH cells. Conclusion: Co-treatment with DEX and LPS suppressed the expression of COX-2 and PGE2, as well as pro-inflammatory cytokines such as IL-1𝛽 and TNF-𝛼 in WISH cells. In addition, the anti-inflammatory effect of DEX and LPS co-treatment was mediated by the inhibition of p38/NF-𝜅B activation.