• Title/Summary/Keyword: tumor immune interaction

Search Result 37, Processing Time 0.025 seconds

Role of Tumor-associated Macrophage in Tumor Microenvironment (암미세환경에서 종양관련대식세포의 역할)

  • Min, Do Sik
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.992-998
    • /
    • 2018
  • Cancer cells grow in an environment composed of various components that supports tumor growth. Major cell types in the tumor microenvironment are fibroblast, endothelial cells and immune cells. All of these cells communicate with cancer cells. Among infiltrating immune cells as an abundant component of solid tumors, macrophages are a major component of the tumor microenvironment and orchestrates various aspects of immunity. The complex balance between pro-tumoral and anti-tumoral effects of immune cell infiltration can create a chronic inflammatory microenvironment essential for tumor growth and progression. Macrophages express different functional programs in response to microenvironmental signals, defined as M1 and M2 polarization. Tumor-associated macrophages (TAM) secret many cytokines, chemokines and proteases, which also promote tumor angiogenesis, growth, metastasis and immunosuppression. TAM have multifaceted roles in the development of many tumor types. TAM also interact with cancer stem cells. This interaction leads to tumorigenesis, metastasis, and drug resistance. TAM obtain various immunosuppressive functions to maintain the tumor microenvironment. TAM are characterized by their heterogeneity and plasticity, as they can be functionally reprogrammed to polarized phenotypes by exposure to cancer-related factors, stromal factors, infections, or even drug interventions. Because TAMs produce tumor-specific chemokines by the stimulation of stromal factors, chemokines might serve as biomarkers that reflect disease activity. The evidence has shown that cancer tissues with high infiltration of TAM are associated with poor patient prognosis and resistance to therapies. Targeting of TAM in tumors is considered a promising therapeutic strategy for anti-cancer treatment.

The Emerging Role of Natural Killer Cells in Innate and Adaptive Immunity

  • Kim, Eun-Mi;Ko, Chang-Bo;Myung, Pyung-Keun;Cho, Daeho;Choi, Inpyo;Kang, Hyung-Sik
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.205-215
    • /
    • 2004
  • In the early host defense system, effector function of natural killer (NK) cells results in natural killing against target cells such as microbe-infected, malignant, and certain allogenic cells without prior stimulation. NK cell cytotoxicity is selectively regulated by homeostatic prevalence between a repertoire of both activating and inhibitory receptors, and the discrimination of untransformed cells is achieved by recognition of major histocompatibility complex (MHC) class I alleles through inhibitory signals. Although it is well known that the bipotential T/NK progenitors are derived from the common precusor, functional mechanisms in terms of the development of NK cells remain to be further investigated. NK cells are mainly involved in innate immunity, but recent studies have been reported that they also play a critical role in adaptive immune responses through interaction with dendritic cells (DC). This interaction will provide effector functions and development of NK cells, and elucidation of its precise mechanism may lead to therapeutic strategies for effective treatment of several immune diseases.

Expression of Granulysin and FOXP3 in Cutaneous T Cell Lymphoma and Sézary Syndrome

  • Shareef, Mohamed Moustafa;Elgarhy, Lamia Hamouda;Wasfy, Rania El-Said
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5359-5364
    • /
    • 2015
  • Background: Multiple complex pathways are operable in the evolution of cutaneous T cell lymphomas (CTCLs). These pathways involve interaction between neoplastic T cells and cells of the immune system (especially dendritic cells and the non-malignant T cells). Granulysin is a proinflammatory antimicrobial peptide which has an immune alarmin function, activating dendritic cells, as well as an active role in tumor immunology and prognosis. FOXP3+ regulatory T cells Tregs are an important player in the immune system. Much controversy is found in the literature about the role of Tregs in CTCL. Aim: The present study aimed to investigate the expression of granulysin and FOXP3 in mycosis fungoides (MF), its precursor lesion large plaque parapsoriasis and its leukemic form ;$s\acute{e}ezary$ syndrome (SS). Materials and Methods: Immunohistochemical expression of granulysin and FOXP3 were assessed in lesional skin biopsies taken from 58 patients (4 large plaque parapsoriasis, 48 MF and 6 SS). Results: Granulysin positivity was cytoplasmic and higher in MF than in parapsoriasis en plaque and higher in the more advanced stages of MF (p<0.001). All groups showed significant differences between each other except between MF tumor stage and SS. FOXP3 positivity was nuclear and higher in early stage MF (plaque and patch stages) than in tumor stages and SS (p<0.001). However the FOXP3 count was lower in parapsoriasis en plaque than in other stages of MF. All the groups showed significant differences between each other except between parapsoriasis and SS and between patch and plaque stages of MF. Conclusions: The present study supports a role for granulysin in MF progression and proposes a novel hypothesis about the effect of FOXP3 +veTregs in the suppression of the activity of the neoplastic cells in MF.

Optimal control formulation in the sense of Caputo derivatives: Solution of hereditary properties of inter and intra cells

  • Muzamal Hussain;Saima Akram;Mohamed A. Khadimallah;Madeeha Tahir;Shabir Ahmad;Mohammed Alsaigh;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.611-623
    • /
    • 2023
  • This work considered an optimal control formulation in the sense of Caputo derivatives. The optimality of the fractional optimal control problem. The tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. In addiltion, existence and local stability of fixed points are investigated for discrete model. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Our technique likewise allows the advancement of results, such as return time to baseline that are unrealistic with current model solvers.

Biological Therapy for Inflammatory Bowel Disease in Children

  • Na, So-Young;Shim, Jung-Ok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.15 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • The pathogenesis of inflammatory bowel diseases is not very well understood; it is currently thought to be caused by the interaction between genetic factors, environmental factors, intestinal microbes, and immune factors. Biological agents such as anti-tumor necrosis factor (anti-TNF) are widely being used as therapeutic agents. Infliximab, a chimeric monoclonal IgG1 antibody against tumor necrosis factor, has been demonstrated to have an effect in the induction and maintenance of remission in Crohn's disease in children. The effects of biological agents, typified by anti-TNFs, in inflammatory bowel disease in children; the recent concern on the administration of biological agents in combination with immunomodulators; and 'Top-down' therapy are some of the topics covered in this review.

Notch Signal Transduction Induces a Novel Profile of Kaposi's Sarcoma-Associated Herpesvirus Gene Expression

  • Chang Hee-Soon
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.217-225
    • /
    • 2006
  • Kaposi's sarcoma-associated herpesvirus (KSHV) RTA transcription factor is recruited to its responsive elements through interaction with RBP-Jk that is a downstream transcription factor of the Notch signaling pathway that is important in development and cell fate determination. This suggests that KSHV RTA mimics cellular Notch signal transduction to activate viral lytic gene expression. Here, I demonstrated that unlike other B lymphoma cells, KSHV -infected primary effusion lymphoma BCBL1 cells displayed the constitutive activation of ligand-mediated Notch signal transduction, evidenced by the Jagged ligand expression and the complete proteolytic process of Notch receptor I. In order to investigate the effect of Notch signal transduction on KSHV gene expression, human Notch intracellular (hNIC) domain that constitutively activates RBP-Jk transcription factor activity was expressed in BCBL1 cells, TRExBCBL1-hNIC, in a tetracycline inducible manner. Gene expression profiling showed that like RTA, hNIC robustly induced expression of a number of viral genes including KS immune modulatory gene resulting in downregulation of MHC I and CD54 surface expression. Finally, the genetic analysis of KSHV genome demonstrated that the hNIC-mediated expression of KS during viral latency consequently conferred the downregulation of MHC I and CD54 surface expression. These results indicate that cellular. Notch signal transduction provides a novel expression profiling of KSHV immune deregulatory gene that consequently confers the escape of host immune surveillance during viral latency.

Monocyte chemoattractant protein-1 polymorphism interaction with spirulina immunomodulatory effects in healthy Korean elderly: A 16-week, double-blind randomized clinical trial

  • Park, Hee Jung;Lee, Hyun Sook
    • Nutrition Research and Practice
    • /
    • v.11 no.4
    • /
    • pp.290-299
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Spirulina is a known a functional food related to lipid profiles, immune functions, and antioxidant capacity. Circulating monocyte chemoattractant protein-1 (MCP-1) level is associated with inflammation markers. Single nucleotide polymorphism in the MCP-1 promoter region -2518 have been identified and shown to affect gene transcription. Gene variation may also impact functional food supplementary effects. The current study investigated the interaction of MCP-1 -2518 polymorphism with spirulina supplements on anti-inflammatory capacity in Korean elderly. SUBJECTS/METHODS: After genotyping, healthy elderly subjects (n = 78) were included in a randomized, double blind, and placebo controlled study. Baseline characteristic, body composition, and dietary intake were measured twice (baseline vs. week 16). For 16 weeks, subjects consumed 8 g either spirulina or placebo daily. Plasma MCP-1, interleukin (IL) -2, IL-6, tumor necrosis factor (TNF)-${\alpha}$, complement (C) 3, immunoglobulin (Ig) G, and Ig A concentrations and lymphocyte proliferation rate (LPR) were analyzed as inflammatory markers. RESULTS: In the placebo group with A/A genotype, MCP-1 level was significantly increased, but the spirulina group with A/A genotype was unchanged. IL-2 was significantly increased only in subjects with spirulina supplementation. TNF-${\alpha}$ was significantly reduced in subjects with the G carrier. C3 was significantly increased in the placebo group, particularly when A/A increased more than G, but not when spirulina was ingested. LPR was significantly different only in subjects with A/A genotype; there was a significant increase in phytohemagglutinin and lipopolysaccharide induced LPR in the spirulina group. CONCLUSION: In healthy Korean elderly, spirulina supplementation may influence different inflammatory markers by the MCP-1 genotype. These results may be useful for customized dietary guidelines to improve immune function in Koreans.

Tristetraprolin Overexpression in Gastric Cancer Cells Suppresses PD-L1 Expression and Inhibits Tumor Progression by Enhancing Antitumor Immunity

  • Guo, Jian;Qu, Huiheng;Shan, Ting;Chen, Yigang;Chen, Ye;Xia, Jiazeng
    • Molecules and Cells
    • /
    • v.41 no.7
    • /
    • pp.653-664
    • /
    • 2018
  • The RNA-binding protein tristetraprolin (TTP) binds to adenosine-uridine AU-rich elements in the 3'-untranslated region of messenger RNAs and facilitates rapid degradation of the target mRNAs. Therefore, it regulates the expression of multiple cancer and immunity-associated transcripts. Furthermore, a lack of TTP in cancer cells influences cancer progression and predicts poor survival. Although the functions of TTP on cancer cells have previously been researched, the mechanism of TTP on the interaction between cancer cells with their micro-environment remains undiscovered. In this study, we admed to determine the role of cancer cell TTP during the interaction between tumor and immune cells, specifically regulatory T cells (Tregs). We evaluate the capability of TTP to modulate the antitumor immunity of GC and explored the underlying mechanism. The overexpression of TTP in GC cells dramatically increased peripheral blood mononuclear lymphocyte (PBML) -mediated cytotoxicity against GC cells. Increased cytotoxicity against TTP-overexpressed GC cells by PBMLs was determined by Treg development and infiltration. Surprisingly, we found the stabilization of programmed death-ligand 1 (PD-L1) mRNA was declining while TTP was elevated. The PD-L1 protein level was reduced in TTP-abundant GC cells. PD-L1 gas been found to play a pivotal role in Treg development and functional maintenance in immune system. Taken together, our results suggest the overexpression of TTP in GC cells not only affects cell survival and apoptosis but also increases PBMLs -mediated cytotoxicity against GC cells to decelerate tumor progression. Moreover, we identified PD-L1 as a critical TTP-regulated factor that contributes to inhibiting antitumor immunity.

CM1 Ligation Induces Apoptosis via Fas-FasL Interaction in Ramos Cells, but via Down-regulation of Bcl-2 and Subsequent Decrease of Mitochondrial Membrane Potential in Raji Cells

  • Lee, Young-Sun;Kim, Yeong-Seok;Kim, Dae-Jin;Hur, Dae-Young;Kang, Jae-Seung;Kim, Young-In;Hahm, Eun-Sil;Cho, Dae-Ho;Hwang, Young-Il;Lee, Wang-Jae
    • IMMUNE NETWORK
    • /
    • v.6 no.2
    • /
    • pp.59-66
    • /
    • 2006
  • Background: CM1 (Centrocyte/-blast Marker I) defined by a mAb developed against concanavalin-A activated PBMC, is expressed specifically on a subpopulation of centroblasts and centrocytes of human germinal center (GC) B cells. Burkitt lymphoma (BL) is a tumor consisting of tumor cells with the characteristics of GC B cell. Previously we reported that CM1 ligation with anti-CM1 mAb induced apoptosis in Ramos $(IgM^{high})$ and Raji $(IgM^{low})$ cells. Methods & Results: In the present study, we observed that CM1 ligation with anti-CM1 mAb induced Fas ligand and Fas expression in Ramos cells, but not in Raji cells. Furthermore, anti-Fas blocking antibody, ZB4, blocked CM1-mediated apoptosis effectively in Ramos cells, but not in Raji cells. Increased mitochondrial membrane permeabilization, which was measured by $DiOC_6$, was observed only in Raji cells. In contrast to no significant change of Bax known as pro-apoptotic protein, anti-apoptotic protein Bcl-2 was significantly decreased in Raji cells. In addition, we observed that CM1 ligation increased release of mitochondrial cytochrome c and upregulated caspase-9 activity in Raji cells. Conclusion: These results suggest that apoptosis induced by CM1-ligation is mediated by Fas-Fas ligand interaction in Ramos cells, whereas apoptosis is mediated by down-regulation of Bcl-2 and subsequent decrease of mitochondrial membrane potential in Raji cells.

Controlled Release of Bordetella Bronchiseptica Dermonecrotoxin(BBD) Vaccine from BBD-Loaded Chitosan Microspheres In Vitro

  • Jiang, Hu-Lin;Park, In-Kyu;Shin, Na-Ri;Yoo, Han-Sang;Akaike, Toshihiro;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.346-350
    • /
    • 2004
  • Chitosan microspheres were prepared by ionic gelation process with sodium sulfate for nasal vaccine delivery. Bordetella Bronchiseptica Dermonecrotoxin (BBD) as a major virulence factor of a causative agent of atrophic rhinitis (AR) was loaded to the chitosan microspheres for vaccination. Morphology of BBD-loaded chitosan microspheres was observed as spherical shapes. The average particle sizes of the BBD-loaded chitosan microspheres were about $2.69$\mid${\;}\mu\textrm{m}$. More BBD was released with an increase of molecular weight of chitosan and with an increase of medium pH in vitro due to weaker intermolecular interaction between chitosan and BBD. Tumor necrosis $factor-{\alpha}{\;}(TNF{\alpha})$ and nitric oxide (NO) from RAW264.7 cells stimulated with BBD-loaded chitosan microspheres were gradually secreted, suggesting that released BBD from chitosan microspheres had immune stimulating activity of AR vaccine.