• Title/Summary/Keyword: tubular joints

Search Result 118, Processing Time 0.029 seconds

Experimental Study on the Inelastic Behavior of Single-layer Latticed Dome with New Connection (새로운 접합상세를 가진 단층 래티스 돔의 비탄성 거동에 관한 실험연구)

  • Kim, Myeong Han;Oh, Myoung Ho;Jung, Seong Yeol;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • This study discusses the inelastic behavior of single-layer latticed dome, which consists of a tubular truss member and newly proposed joint sections, through a loading test on a scaled-down structure. The loading test was performed under displacement control conditions, using loading transfer system for the same value of point loads on all joints. The maximum applied load was nearly 1.6 times of the design load, and structural failure occurred after exceeding the compressive yielding in some members. Structural displacement was maintained up to the limit of the oil jack. The behavior of the latticed dome from the loading test was analyzed according to the order of loading steps.

Experimental Study on the Inelastic Behavior of Single-layer Latticed Dome (단층 래티스 돔의 비탄성 거동에 대한 실험연구)

  • Kim, Jong-Soo;Kim, Sang-Dae;Kim, Myeong-Han;Oh, Myoung-Ho;Shin, Chang-Hoon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.165-170
    • /
    • 2008
  • This study discusses the inelastic behavior of single-layer latticed dome, composed of tubular truss member and newly proposed joint sections, through loading test on the scale-down structure. The loading test was performed under displacement control conditions, using loading transfer system for the same value of point loads on all joints. Maximum applied load was nearly 1.6 times of the design load, and inelastic buckling occured beyond compressive yeilding in some members. The displacement of structure was maimtained upto the limit of oil jack. The behavior of latticed dome from the loading test was analyzed on the view of structural design practice.

  • PDF

Experimental Study on the On-line Monitoring of Offshore Structures Using Acoustic Emission Technology (음향방출법을 이용한 해양구조물의 온라인 감시에 관한 실험적 연구)

  • Won, Soon-Ho;Cho, Kyung-Shik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.73-82
    • /
    • 1999
  • In this research, an experimental study is presented to check the possibilities of offshore structures monitoring using AE techniques. The underwater transducer and preamplifier are fabricated. And, it is proved that this unit can be used for the detection of AE in offshore structures. Wave propagation studies have shown that supplementary attenuations due to seawater are significantly reducing the detection range of the sensors. It excludes the possibility of offshore structures monitoring with a small number of sensors. We conclude that AE waves would be correctly detected for a path of about 3m. Tubular joints have been tested in air and underwater using simulated elastic wave. Ability of AE techniques to detect and locate cracks early in their evolution has been demonstrated. Several parameters of AE generation have been set in evidence. It has also been shown that crack development goes with an increase of AE parameter. Conclusively, it is shown that AE techniques can provide practical alternatives to present methods being used for inspection of deep-water offshore structures undergoing structural degradation due to fatigue crack growth.

  • PDF

The practice of blind bolting connections to structural hollow sections: A review

  • Barnett, T.C.;Tizani, W.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 2001
  • Due to aesthetic, economic, and structural performance, the use of structural hollow sections as columns in both continuous moment resisting and nominally pinned construction is attractive. Connecting the beams to these sections is somewhat problematic as there is no access to the interior of the section to allow for the tightening of a standard bolt. Therefore, bolts that may be tightened from one side, i.e., blind bolts, have been developed to facilitate the use of site bolting for this arrangement. This paper critically reviews available information concerning blind bolting technology, especially the performance of fasteners in shear, tension, and moment resisting connections. Also provided is an explanation of the way in which the results have been incorporated into design guidance covering the particular case of nominally pinned connections. For moment resisting connections, it is concluded that whilst the principle has been adequately demonstrated, sufficient data are currently not available to permit the provision of authoritative design guidance. In addition, inherent flexibilities in the connections mean that performance equivalent to full strength and rigid is unlikely to be achievable: a semicontinuous approach to frame design will therefore be necessary.

Fundamental Study on the Design of Steel Tube Structures Based on the Qualitative Analysis (복합강구조물 설계에 정성분석기법을 적용하기 위한 기초연구)

  • Kang, Hyun-Sik;Lim, Seo-Hyung;Park, Yong-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.149-156
    • /
    • 2006
  • Steel hollow section members have been widely used as a major material in the construction market due largely to their efficiency, their aesthetic appeal and to the technical development. But it is true that the commercial Program for dealing with a joint problem using hollow section members is not firmly established due to its uncertain and variable design parameters. The qualitative analysis program developed by using computer is introduced in this study. The results of that analysis are shown in the two-dimensional space in variable ranges and diagrams, so it would be useful to whom have not many experiences and knowledges. It is represented that the differences between Canadian code and the Korean standard for the connections of hollow section members. And It is verified that the software is applicable to the Preliminary design in steel tubular structures.

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

A component method model for blind-bolts with headed anchors in tension

  • Pitrakkos, Theodoros;Tizani, Walid
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1305-1330
    • /
    • 2015
  • The successful application of the component-based approach - widely used to model structural joints - requires knowledge of the mechanical properties of the constitutive joint components, including an appropriate assembly procedure to derive the joint properties. This paper presents a component-method model for a structural joint component that is located in the tension zone of blind-bolted connections to concrete-filled tubular steel profiles. The model relates to the response of blind-bolts with headed anchors under monotonic loading, and the blind-bolt is termed the "Extended Hollo-bolt". Experimental data is used to develop the model, with the data being collected in a manner such that constitutive models were characterised for the principal elements which contribute to the global deformability of the connector. The model, based on a system of spring elements, incorporates pre-load and deformation from various parts of the blind-bolt: (i) the internal bolt elongation; (ii) the connector's expanding sleeves element; and (iii) the connector's mechanical anchorage element. The characteristics of these elements are determined on the basis of piecewise functions, accounting for basic geometrical and mechanical properties such as the strength of the concrete applied to the tube, the connection clamping length, and the size and class of the blind-bolt's internal bolt. An assembly process is then detailed to establish the model for the elastic and inelastic behaviour of the component. Comparisons of model predictions with experimental data show that the proposed model can predict with sufficient accuracy the response of the component. The model furthers the development of a full and detailed design method for an original connection technology.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.