• Title/Summary/Keyword: tubular flow reactor

Search Result 19, Processing Time 0.028 seconds

ANALYSIS OF MIXING EFFICIENCY OF A TUBULAR HEAT-EXCHANGER REACTOR USING CFD (CFD를 이용한 관상 열교환기형 반응기의 mixing 효율 분석)

  • Lee Ji Hyun;Song Hyun-Seob;Han Sang Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.45-47
    • /
    • 2005
  • We have investigated the mixing behavior of a tubular heat exchanger reactor using CFD and compared its mixing performance with different type of reactors such as jet mixer and continuous stirred tank reactor (CSTR). The mixedness in each reactor was quantified introducing a statistical average value, the coefficient of variation (CoV), which is a normalized standard deviation of concentration of a component over the whole fluid domain. Through the analysis of the flow pattern and turbulent energy distribution, we suggested a simple but effective way to improve the mixing performance of the tubular heat-exchanger reactor, which include the addition of the internals and/or the increase of the recycle flow rate. It was found that the CoV value of the tubular reactor could be nearly equivalent to that of CSTR by applying those two alternatives suggested here.

  • PDF

Pyrolysis Reaction for the Treatment of Hazardous Halogenated Hydrocarbon Waste (유해 할로겐화 탄화수소 폐기물 처리를 위한 열분해 반응)

  • 조완근
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.399-407
    • /
    • 1997
  • The pyrolysis reactions of atomic hydrogen with chloroform were studied In a 4 cm 1.6. tubular flow reactor with low flow velocity 1518 cm/sec and a 2.6 cm 1.4. tubular flow reactor with high flow velocity (1227 cm/sec). The hydrogen atom concentration was measured by chemiluminescence titration with nitrogen dioxide, and the chloroform concentrations were determined using a gas chromatography. The chloroform conversion efficiency depended on both the chloroform flow rate and linear flow velocity, but 416 not depend on the flow rate of hydrogen atom. A computer model was employed to estimate a rate constant for the initial reaction of atomic hydrogen with chloroform. The model consisted of a scheme for chloroform-hydrogen atom reaction, Runge-Kutta 4th-order method for Integration of first-order differential equations describing the time dependence of the concentrations of various chemical species, and Rosenbrock method for optimization to match model and experimental results. The scheme for chloroform-hydrogen atom reaction Included 22 elementary reactions. The rate constant estimated using the data obtained from the 2.6 cm 1.4. reactor was to be 8.1 $\times$ $10^{-14}$ $cm^3$/molecule-sec and 3.8 $\times$ $10^{-15}$ cms/molecule-sec, and the deviations of computer model from experimental results were 9% and 12% , for the each reaction time of 0.028 sec and 0.072 sec, respectively.

  • PDF

Heat Transfer Characteristics of Tubular Thermal Reactor (관형 열반응기의 열전달 특성)

  • Yang, Hei-Cheon;Park, Sang-Kyoo;Ra, Beong-Yeol
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1948-1952
    • /
    • 2007
  • Heat transfer augmentation based on the process intensification concept in heat exchangers and thermal reactors has received much attention in recent years, mainly due to energy efficiency and environmental considerations. The concept consists of the development of novel apparatuses and techniques that, compared to those commonly used today, are expected to bring dramatic improvements in manufacturing and processing, substantially decreasing equipment size, energy consumption, and ultimately resulting in cheaper, sustainable technologies. The objective of this paper was to investigate the heat transfer characteristics of tubular thermal reactor using static mixing technology. Glycerin and water were used as the test fluids and water was used as the heating source. The results for heat transfer rate were strongly influenced by tube geometry and flow conditions.

  • PDF

Camelina oil transesterification using mixed catalyst of tetra methyl amonium hydroxide and potassium hydroxide on the tubular reactor

  • Hyun, Young-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2011
  • The analysis of reaction kinetics provided that the reaction order was the $1^{st}$ of triglyceride and the rate constant was 0.067 $min^{-1}$. The transesterification of camelina oil using 0.6 wt% mixed catalyst which consists of 40 v/v% of potassium hydroxide (1 wt%) and 60 v/v% of tetra methyl ammonium hydroxide (0.8 wt%), was carried out at $65^{\circ}C$ on the tubular reactor packed with static mixer. The conversion was shown to be 95.5% at the 6:1 molar ratio of methanol to oil, flow rate of feed of 3.0 mL/min and 24 of element of static mixer. The volume of washing water emitted by 0.6 wt% mixed catalyst was the half of the volume emitted by 1 wt% potassium hydroxide.

Rigorous Modeling and Simulation of Multi-tubular Reactor for Water Gas Shift Reaction (Water Gas Shift Reaction을 위한 Multi-tubular Reactor 모델링 및 모사)

  • Park, Junyong;Choi, Youngjae;Kim, Kihyun;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.931-937
    • /
    • 2008
  • Rigorous multiscale modelling and simulation of the MTR for WGSR was carried out to accurately predict the behavior of process variables and the reactor performance. The MTR consists of 4 fixed bed tube reactors packed with heterogeneous catalysts, as well as surrounding shell part for the cooling purpose. Considering that fluid flow field and reaction kinetics give a great influence on the reactor performance, employing multiscale methodology encompassing Computational Fluid Dynamics (CFD) and process modeling was natural and, in a sense, inevitable conclusion. Inlet and outlet temperature of the reactant fluid at the tube side was $345^{\circ}C$ and $390^{\circ}C$, respectively and the CO conversion at the exit of the tube side with these conditions approached to about 0.89. At the shell side, the inlet and outlet temperature of the cooling fluid, which flows counter-currently to tube flow, was $190^{\circ}C$ and $240^{\circ}C$. From this heat exchange, the energy saving was achieved for the flow at shell side and temperature of the tube side was properly controlled to obtain high CO conversion. The simulation results from this research were accurately comparable to the experimental data from various papers.

Characteristics of Hydrogen and Carbon Production in Tubluar Reactor by Thermal Decomposition of Methane (Methane의 고온열분해에 의한 Tubluar reactor에서의 수소 및 탄소 생성 특성)

  • Lee, Byung Gwon;Lim, Jong Sung;Choi, Dae Ki;Park, Jeong Kun;Lee, Young Whan;Baek, Young Soon
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • This work was focused on the thermal decomposition of methane into hydrogen and carbon black without emitting carbon dioxide. Extensive experimental investigation on the thermal decomposition of methane has been carried out using a continuous flow reaction system with tubular reactor. The experiments were conducted at the atmospheric pressure condition in the wide range of temperature ($950-1150^{\circ}C$) and flow rate (250 - 1500 ml/min) in order to study their dependency on hydrogen yield. During the experiments the carbon black was successfully recovered as an useful product. Undesirable pyrocarbon was also formed as solid film, which was deposited on the inside surface of tubular reactor. The film of pyrocarbon in the reactor wall became thicker and thicker, finally blocking the reactor. The design of an efficient reactor which can effectively suppress the formation of pyrocarbon was thought to be one of the most important subjects in the thermal cracking of methane.

THE CHARACTERISTICS OF HEAT TRANSFER AND CHEMICAL REACTION FOR THERMAL CRACKING OF ETHANE IN TUBULAR REACTOR (에탄 열분해 반응이 동반된 관형 반응기에서의 열전달 및 화학반응 특성 연구)

  • Shin, C.Y.;Ahn, J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • Thermal cracking is commonly modeled as plug flow reaction, neglecting the lateral gradients present. In this paper, 2-dimensional computational fluid dynamics including turbulence model and molecular reaction scheme are carried out. This simulation is solved by means of coupled implicit scheme for stable convergence of solution. The reactor is modeled as an isothermal tube, whose length is 1.2 m and radius is 0.01 m, respectively. At first, The radial profile of velocity and temperature at each point are predicted in its condition. Then the bulk temperature and conversion curve along the axial direction are compared with other published data to identify the reason why discussed variations of properties are important to product yield. Finally, defining a new non-dimensional number, Effect of interaction with turbulence, heat transfer and chemical reaction are discussed for design of thermal cracking furnace.

Effect of CH4 addition to the H2 Plasma Excited by HF ICP for H2 Production (고주파유도결합에 의해 여기된 물플라즈마로부터 수소생산에서 메탄가스 첨가효과)

  • Kim, Dae-Woon;Jung, Yong-Ho;Choo, Won-Il;Jang, Soo-Ouk;Lee, Bong-Ju;Kim, Young-Ho;Lee, Seung-Heun;Kwon, Sung-Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.448-454
    • /
    • 2009
  • Hydrogen was produced from water plasma excited in high frequency (HF) inductively coupled tubular reactor. Mass spectrometry was used to monitor gas phase species at various process conditions, Water dissociation rate depend on the process parameters such as ICP power, $H_{2}O$ flow-rate and process pressure, Water dissociation percent in ICP reactor decrease with increase of chamber pressure, while increase with increase of ICP power and $H_{2}O$ flow rate. The effect of $CH_4$ gas addition to a water plasma on the hydrogen production has been studied in a HF ICP tubular reactor. The main roles of $CH_4$ additive gas in $H_{2}O$ plasma are to react with 0 radical for forming $CO_x$ and CHO and resulting additional $H_2$ production. Furthermore, $CH_4$ additives in $H_{2}O$ plasma is to suppress reverse-reaction by scavenging 0 radical. But, process optimization is needed because $CH_4$ addition has some negative effects such as cost increase and $CO_x$ emission.

Biodiesel Production using Microfiltration Tubular Membrane (정밀여과용 관형막을 이용한 바이오디젤 제조)

  • Lee, Won-Joong;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.113-119
    • /
    • 2010
  • Biodiesel was produced from Canola, soybean and Jatropha oils combined methanol using continuously recycled membrane reactor. The membrane served to react and separate the unreacted oil from the product stream, producing high-purity fatty acid methyl ester (FAME). Two ceramic tubular membranes having different nominal pore sizes of 0.2 and 0.5 ${\mu}m$ were used. Permeate was observed at 0.5, 1.0 and 2.0 bar with a given flow rate, respectively. The permeate flux for 0.2 ${\mu}m$ membrane at 0.5 bar and 400 mL/min flow rate was 15 L/$m^2{\cdot}hr$. Also FAME content in permeate was the highest at 0.5 bar, and decreased with increasing operating pressure.

Conversion of Vegetable Oil into Biodiesel Fuel by Continuous Process (연속공정에 의한 식물유의 바이오디젤유 전환)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.327-334
    • /
    • 2002
  • Transesterfication of vegetable oils and methanol with alkaline catalyst was carried out to produce biodiesel fuel by continuous process. The process consists of two static mixers, one tubular reactor and two coolers and gave $96{\sim}99$% of methyl ester yield from soybean oil and rapeseed oil. Experimental variables were the molar ratios of methanol to vegetable oil, alkaline catalyst contents, flow rates, mixer element number. The optimum ranges of operating variables were as follows; reaction temperature of $70^{\circ}C$, l:6 of molar ratio of methanol to oil, O.4%(w/w) sodium hydroxide based on oil, static mixer elements number of 24 and 4 min. residence time.