• Title/Summary/Keyword: tubular

Search Result 1,914, Processing Time 0.026 seconds

Interlaminar Normal Stress Effects in Cylindrical Tubular Specimens of Graphite/Epoxy [±45]s Composites

  • An, Deuk Man
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.406-409
    • /
    • 2017
  • The thin-walled cylindrical tubes are frequently used for the evaluation of fatigue property of composites. But the curvature of the tubular specimen induces interlaminar normal stress which may affect the fatigue property. In this paper interlaminar normal stress effect on the fatigue behaviour of thin-walled graphite/epoxy tubes $[{\pm}45]_s$ composites was studied experimentally. It was concluded that the interlaminar normal stress induced by the curvature of the cylinder has no discernible effect on the fatigue life. But excessive internal pressure can produce the stiffness increase and this affects the fatigue life of the cylindrical tubular composite.

A study of tubular steel Furniture -Focused on the chair design in $1920s{\sim}1930s$- (강철관(鋼鐵管) 가구디자인에 관한 연구 -1920년대부터 1930년대 디자인을 중심으로-)

  • Oh, Se-Ja
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.3
    • /
    • pp.57-68
    • /
    • 2006
  • Most of all furniture had been produced from wood, because it is easy to obtain from our surroundings. As time goes by people want to decorate their house with new material furniture. Because it is outcome from development of material technology & industrialization. Furniture design trends of twenty century are not only the fruits of great talented furniture artists but also high-tech material engineers. In this study, I deal with a tubular steel, as an one of the most important material of furniture, and also tubular steel furniture manufactured by a cantilever method. This study researches what are special features of it, how can designers utilize it to furniture and how do they conquest defects of the material such as a sensation of coldness, hardness and so on. In this context, It is possible that create not only new shape of furniture but also new style of space through new technology innovation.

  • PDF

Development of rear chassis part using tube forming process (튜브포밍공법을 이용한 후륜 현가부품의 개발)

  • Park B. C.;Kwon T. W.;Lee D. H.;Suh C. H.;Kim J. C.;Kim T. J.;Lee W. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.32-35
    • /
    • 2004
  • The development of automotive rear chassis part using tube forming process has advantage of increase in part durability and decrease in its weight. We developed tubular type rear CTBA(Coupled Torsion Beam Axle) part with 60K high strength steel developed by POSCO in this project. The result was demonstrated that tubular type CTBA shows excellent durability performance and $10\%$ weight reduction compared with V-beam type CTBA in our work. Furthermore, we will adapt this technology to mass production and apply to the other chassis parts.

  • PDF

Behavior of Concrete-Filled and Tied Steel Tubular Arch Girder (콘크리트 충전 타이드 아치형 강재 합성거더의 선형 거동 분석)

  • Lee, Hak;Park, Ho;Lee, Eun-Ho;Kim, Jung-Ho;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.688-693
    • /
    • 2007
  • Nowadays various studies related with superstructure of bridges are developed and they pursuit more effective section of bridges superstructure, material and economical application of composite materials. CFT structure(Concrete Filled Steel Tubular Structure) is developed type of composite structure that concrete is filled with steel box, and the deformation of the member, stiffness and internal force will be improved by confinement effect of steel box and concrete. This paper introduces new type of girder, CFTA girder( Concrete- Filled and Tied Steel Tubular Arch Girder) which is combined with traditional CFT structure,arch effect and prestress through carrying out the structural analysis by computer programs. The computer programs which is used are ABAQCS and MIDAS, and the 12.2m girder which is applied same load and prestresses is analyzed and compared the results respectively.

  • PDF

Behaviour of carbon fiber reinforced polymer strengthened tubular joints

  • Prashob, P.S.;Shashikala, A P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.383-390
    • /
    • 2017
  • This paper highlights the experimental and numerical investigations performed on a tubular T-joint fabricated from circular hollow sections under axial compressive loads applied at the brace. Tests were performed on a reference joint and the joint wrapped with Carbon Fiber Reinforced Polymer (CFRP). The Nitowrap EP carbon fiber with Nitowrap 410 resin serve as a composite material is used for wrapping the T-joint. Schematic diagram of the fabricated tubular joint for the experimental test setup, along with the experimental and numerical results are presented. After performing these experiments, it has been demonstrated that the joint wrapped with CFRP has a better strength and lesser deflection than a reference joint. Finite element analysis carried out in Ansys reveals that the results were in good correlation with the experimental values.

Fabrication of YSZ-based Micro Tubular SOFC Single Cell using Electrophoretic Deposition Process

  • Yu, Seung-Min;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.315-319
    • /
    • 2015
  • Yttria-stabilized zirconia (YSZ)-based micro tubular SOFC single cells were fabricated by electrophoretic deposition (EPD) process. Stable slurries for the EPD process were prepared by adding phosphate ester (PE) as a dispersant in order to control the pH, conductivity, and zeta-potential. NiO-YSZ anode support, NiO-YSZ anode functional layer (AFL), and YSZ electrolyte were consecutively deposited on a graphite rod using the EPD process; materials were then co-sintered at $1400^{\circ}C$ for 4 h. The thickness of the deposited layer increased with increasing of the applied voltage and the deposition time. A YSZ-based micro tubular single cell fabricated by the EPD process exhibited a maximum power density of $0.3W/cm^2$ at $750^{\circ}C$.

Concept, Manufacture and Results of the Microtubular Solid Oxide Fuel Cell

  • Sammes, Nigel;Galloway, Kevin;Yamaguchi, Toshiaki;Serincan, Mustafa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • This paper summarized concept, manufacture and results of the micro-tubular solid oxide fuel cells (SOFCs). The cells were fabricated by co-sintering of extruded micro-tubular anode support and electrolyte coating layer, and then additional cathode coating. The cells showed quick voltage rising within 1 minute, and the electrochemical performances were closely related to the balance of fuel utilization and performance loss. And a thermal-fluid simulation model was also reported in combination with the electrochemical evaluation results on the GDC-based micro-tubular SOFCs.

The Study of Characteristics of Tubular Type Coaxial Shunt for High Current Measuring System (대전류 측정용 Tubular Coaxial Shunt 특성에 관한 연구)

  • Roh, Chang-Il;La, Dae-Ryeol;Kim, Sun-Koo;Jung, Heung-Soo;Kim, Won-Man;Lee, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.834-836
    • /
    • 2003
  • This paper describes the optimal design, construction and performance evaluation of coaxial shunts used in high current testing laboratory for current measuring system. These shunts, which are of tubular type coaxial shunts, the currents to be measured range from Amperes to several kiloAmperes, and the frequency of the signals has a bandwidth from DC to megaHertz. The shunt must have the mechanical strength to support the forces produced by the transient current, above all, the measuring capabilities of shunt are dependent upon short response time and it must be as free as possible of inductive effects. In this paper presents both characteristic of shunt and design of tubular type coaxial shunt.

  • PDF

Advanced Water Treatment by Tubular Alumina Ceramic Ultrafiltration: Effect of Periodic Water-back-flushing Period

  • Park, Jin-Yong;Lee, Song-Hui
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • The periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in tubular ceramic ultrafiltration (UF) system for Gongji stream water treatment in Chuncheon city. The filtration time (FT), which was the water-back-flushing period, 2 min with periodic 15 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_o$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume ($V_T$) of 6.35 L. Consequently FT 2 min at back-flushing time (BT) 15 sec could be the optimal condition in advanced UF water treatment of Gongji stream. Then the average rejection rates of pollutants by our tubular ceramic UF system were 99.4% for Turbidity, 31.8% for $COD_{Mn}$, 22.6% for $NH_3$-N and 65.9% for T-P.

A Study on the Fatigue Life of Large-Scale Tubular K-joints (대형 Tubular K-Joint의 피로수명에 관한 연구)

  • Im, Sung-Woo;Chang, In-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Large-scale tests of welded tubular K-joint sunder balanced in-plane bending braces were carried out to observe the fatigue behavior of the API 2W Gr.60 steel plate produced by POSCO. Toe grinding and weld profiling were used to improve the fatigue life of a tubular K-joint. The effects of the steel grade and chord wall thickness on the fatigue life were also investigated. The present results were compared with the UK DEn design curve.