• Title/Summary/Keyword: tube internal

Search Result 591, Processing Time 0.028 seconds

Hydroforming Process Design of High-Strength Steel Tube (고장력강 관재 액압성형 공정 설계)

  • Kim, K.J.;Kim, H.Y.;Ko, H.G.;Shin, M.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.202-205
    • /
    • 2009
  • Tubular torsion beam of high strength steel is going about in an automotive rear axle due to the advantages of light weight and efficient rear packaging capability. High strength tubular beam can be manufactured by the hydroforming in order to ensure dimensional accuracy, while a conventional stamping has been used for steel tubular beam. Internal pressure, feeding and their combination are the key factors of controlling the process. Based on the numerical simulation and try-outs, the optimized hydroforming process conditions for the high strength tubular beam were suggested.

  • PDF

Influence of creep on dynamic behavior of concrete filled steel tube arch bridges

  • Ma, Yishuo;Wang, Yuanfeng;Su, Li;Mei, Shengqi
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.109-122
    • /
    • 2016
  • Concrete creep, while significantly changing the static behaviors of concrete filled steel tube (CFST) structures, do alter the structures' dynamic behaviors as well, which is studied quite limitedly. The attempt to investigate the influence of concrete creep on the dynamic property and response of CFST arch bridges was made in this paper. The mechanism through which creep exerts its influence was analyzed first; then a predicative formula was proposed for the concrete elastic modulus after creep based on available test data; finally a numerical analysis for the effect of creep on the dynamic behaviors of a long-span half-through CFST arch bridge was conducted. It is demonstrated that the presence of concrete creep increases the elastic modulus of concrete, and further magnifies the seismic responses of the displacement and internal force in some sections of the bridge. This influence is related closely to the excitation and the structure, and should be analyzed case-by-case.

Effects of Heat Treatment on Hydroformability of Aluminum Tubes (알루미늄 튜브의 열처리 조건에 따른 액압 성형성 연구)

  • Lee M. Y.;Sohn S. M.;Jo Y. J.;Lee S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.364-367
    • /
    • 2001
  • Recently social demands of fuel economy and environmental regulation require the development of light materials and new manufacturing technologies. In this point, aluminum tube hydroforming, which is satisfied with good strength-to-weight ratio and recyclability, is new innovative concept. but, up to now the level of that is relatively low. In this paper, we studied formability of different aluminum tubes in different heat treatments under internal pressure and axial feeding, and mechanical properties of aluminum tubes before and after hydroforming.

  • PDF

Analysis of hydroforming process for bumper stay (하이드로포밍 공정을 이용한 범퍼 스테이 개발)

  • 강부현;김봉준;류종수;손성만;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.233-236
    • /
    • 2003
  • A bumper comprises a bumper face, a bumper beam for distributing the load from the impacts applied to the bumper face and reinforcing the bumper, an absorber member interposed between the bumper face and the bumper beam, and a pair of bumper stays which secure the bumper beam to the vehicle body. A conventional bumper stay structure is assembled into several stamped parts, so several processes are needed and the structure is complicated. In this study the bumper stay is applied to the tubular hydroforming which is known to have several advantages such as the reduction of the number of the process and the part weight. The thickness distribution of the tube after hydroforming and the internal energy at the event of the a compression are mainly considered to evaluate the hydro-formability and energy absorption performance.

  • PDF

Investigation on Characteristics of Pressure Drop and Heat Transfer in the Spirally Indented Tubes (스파이럴리 인덴티드 전열관 내부에서의 압력 강하 및 전열 특성에 관한 고찰)

  • Kim, Do-Hyoung;Kim, Ik-Saeng;Kim, Kyun-Seok;Yoo, Byoung-Hoon;Kim, Chun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.440-446
    • /
    • 2001
  • The pressure drop and heat transfer of the spirally indented tubes were measured and analyzed. Eight sample tubes of indentation depth 0.4, 0.7mm and indentation pitch 10, 14, 20, 26mm were used in this experimental tests. And all the tubes have same outer diameter of 16mm, and same indentation start number of I. Air was used as the internal fluid from 10000 to 50000 for Reynolds Number. The friction factors and heat transfer coefficients have increased when indentation depths increase and indentation pitches decrease. Finally, the correlations were made between the effect of the tube geometry and characteristics of tubes for the pressure drop and heat transfer.

  • PDF

A Parameter Study of Internally Confined Hollow Reinforced Concrete Piers (내부 구속 중공 RC 교각의 매개변수 연구)

  • Choi, Jun-Ho;Yoon, Ki-Yong;Han, Taek-Hee;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.59-62
    • /
    • 2007
  • The hollow RC(Reinforced concrete) pier has decrease of weight and reduced of materials compared to solid RC pier. However, the hollow RC pier shows a low ductile behavior due to brittle failure of inside concrete. To overcome this problem, the internally confined hollow reinforced concrete column has been developed. In this study, the behavior of internally confined hollow RC piers were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. The chosen parameters for the study are hollow ratio, thickness of internal steel tube, intervals between vertical re-bars, numbers of horizontal re-bars, and strength of concrete.

  • PDF

Mathematical Model of Shock Absorber for Performance Prediction of Automobile

  • Park, Jae-Woo;Lee, Jong-Heon;Kim, Jin-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.467-478
    • /
    • 2003
  • Automotive shock absorber may not be regarded as only one(simple) damping machine because it is composed of many components, and shows non-linear damping characteristics. No matter how advanced form of shock absorber is developed, the oil shock absorber can not be neglected. because their structures are based on the oil shock absorber. Therefore it is essential to accurately analyze the dynamic characteristics of oil shock absorber. It stands mainly roi damper valve tuning which nowadays is still exhaustively done by means of ride work. In this study, damping mechanism and dynamic characteristics for oil shock absorber of twin tube type are analyzed, based on the mathematical model considering internal flow and pressure. For the reliability of numerical prediction. the database is constructed within the limit of adequate reliability. Finally, the programmed system that gives out necessary specification by inputting damping specification and tolerance is to be constructed.

A Study on the Effects of the Process Parameters for the Tube Hydroforming Process (관재 하이드로포밍시 공정인자 영향도에 관한 연구)

  • Kim K. J.;Kim J. W.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.49-53
    • /
    • 2001
  • Recently hydroforming process became a process which is increasingly applied in the automotive industry. As the hydroforming process is a new technology, there is no abundant data to assist manufacturing the products. To investigate the effects of process parameters on the tube hydroforming process, simple bulging, circular bulging and Tee-fitting tests are performed. The optimal leading path to escape the failure modes(bursting, wrinkling) is determined and the effects of the process parameters, the internal pressure and axial feeding on the product quality, such as thickness distribution, forming height and branch dome shape are investigated.

  • PDF

A Study on the Design of High-Frequency Jet Ventilator Using PLL system (위상동기루프 방식을 이용한 고빈도 JET환기장치의 설계에 관한 연구)

  • Lee, Joon-Ha;Chung, Jae-Chun
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.63-70
    • /
    • 1989
  • This paper describes to design and to examine the mechanical characteristics of high frequency jet ventilator. The device consists of Phase lock loop(PLL) system, solenoid valve driving control part and Air regulating system. This study is carried out by changing several factors such as endotracheal tube(E.T. tube)diameter, injector cannula diameter, 1%, and frequency(breaths/mim.) having direct effects on the gas exchange as well as parameters of the entrained gas by venturi effects, so as to measure the tidal volume and minute volume. This system characteristics were as follows : 1) Frequency : 6-594bpm 2) Inspiration time : 1-99% 3) Variance of input air pressure : 1-30PSI.

  • PDF

Finite element study on the hydro-embedding process (유한요소 해석법을 이용한 하이드로 임베딩 공정연구)

  • Kim D. K.;Park K. S.;Kim D. H.;Moon Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.206-209
    • /
    • 2004
  • In the hydroforming process the number of process can be reduced by combining pre-forming process and post-forming process such as the bending, piercing and the embedding process. Integrated studies on the embedding manufacturing technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters. In this study, a simulation model that can prove clamping force between the clamping element and tube has been investigated by FEM. The characteristics of the embedded parts, such as the shape of the screw tip, screw thread and shape of thread were investigated at various clamping element conditions.

  • PDF