• Title/Summary/Keyword: tsunami

Search Result 394, Processing Time 0.036 seconds

Numerical Analysis on the Development of Shut off Damper for a Tsunami at a Nuclear Plant (원자력 발전소의 해일 차단용 댐퍼 개발을 위한 수치해석)

  • Park, Joo-Young;Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.471-477
    • /
    • 2014
  • The purpose of this study was to predict the load effect on a damper installed at a nuclear power plant building after a tsunami using a volume of fluid (VOF) numerical analysis method. The wave height was determined by a sine wave function and the tsunami condition was estimated by the wave length. Also, using computational fluid dynamics (CFD), the maximum damper load was set as a boundary condition for the structural analysis that verified how stress and deformation affect the damper. As a result, such simulations estimated the highest stress distribution for a wave length of 350 m with a maximum stress present at the cross point of stiffness installed at the rear end of the damper. The total deformation was approximately 32 mm at the center of damper.

Numerical Simulations of 1983 Central East Sea Tsunami at Imwon: 1. Propagation across the East Sea (임원에서의 1983년 동해 중부 지진해일 수치모의: 1. 동해에서의 전파)

  • Cho, Yong-Sik;Lee, Ho-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.443-452
    • /
    • 2002
  • The propagation of the 1983 Central East Sea Tsunami recorded as the most devastating tsunami during last decades across the East Sea is numerically simulated in this study h numerical model based on the shallow~water equations is employed. The physical dispersion is somewhat replaced by the numerical dispersion resulting from the leap-frog scheme. Traveling times of leading tsunamis are estimated and wane rays are calulated based on the Munk and Arthur(1952).

Numerical Simulations of 1983 Central East Sea Tsunami at Imwon: 2. Run-up Process at Imwon Port (임원에서의 1983년 동해 중부 지진해일 수치모의: 2. 임원항에서의 범람)

  • Lee, Ho-Jun;Kim, Kyung-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.453-461
    • /
    • 2002
  • The run-up process of the 1983 Central East Sea Tsunami along the Eastern Coast is numerically investigated in this study. A finite difference numerical model based on the nonlinear shallow-water equations is employed. The maximum run-up height at Imwon is predicted and compared to field observation. A good agreement is observed. A maximum inundation map is made based on the maximum run-up heights to accentuate hazards of tsunami flooding.

Study on inclined propagation of a tsunami (경사진 지진해일에 관한 연구)

  • Ha, Tae-Min;Sim, Ju-Yeul;Joh, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.427-429
    • /
    • 2008
  • During last decades several devastating tsunamis have been occurred around the Pacific Ocean area. These tsunamis not only killed many human beings but also caused serious property damages. In the southern sea of the Korean Peninsula, many islands are scattered. These islands are very vulnerable to unexpected tsunami attacks. In this study, a numerical model is employed to investigate behaviors of tsunamis around circular islands. Although a few studies have been reported on the run-up heights of tsunami attacking a circular island, the effects of oblique incidence of tsunamis on the run-up heights have not been examined in detail. The run-up heights of obliquely incident tsunamis will be studied.

  • PDF

Numerical Simulation of Transoceanic Propagation and Run-up of Tsunami (지진해일의 전파와 처오름에 관한 수치해석)

  • Jo, Yong-Sik;Yun, Seong-Beom
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.2
    • /
    • pp.169-176
    • /
    • 2001
  • The propagation and associated run-up process of tsunami are numerically investigated in this study. A transoceanic propagation model is first used to simulate the distant propagation of tsunamis. An inundation model is then employed to simulate the subsequent run-up process near coastline. A case study is done for the 1960 Chilean tsunami. A detailed maximum inundation map at Hilo Bay is obtained and compared with field observation and other numerical model predictions. A very reasonable agreement is observed.

  • PDF

Construction and Application of the Hydraulic Scale Model for the Analysis of Sediment Transport by Tsumani (지진해일에 의한 토사이동 해석을 위한 수리모형장치 제작 및 적용성 평가)

  • Youm, Min Kyo;Lee, Baek Gun;Min, Byung Il;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.201-207
    • /
    • 2013
  • Soil liquefaction by tsunami or wave induced currents can cause serious damages to coastlines and coastal infrastructures. Although liquefaction caused by regular waves over sea beds has been extensively investigated, studies of tsunami-induced liquefaction near coastal area have been relatively rare. In this work, the hydraulic scale model has been designed and constructed to investigate the variations of wave height and sediment transport by tsunami. The distorted hydraulic scale model based on the Froude similarity was adopted to represent hydrodynamics and sediment transport in a coastal area. The scale model was composed of control box, screw axis, wave paddle and rotating coastal structure.

A Study on Dynamic Analysis of Moored Ship Motions by Tsunami (쓰나미에 의한 계류 선박의 동적 동요 해석에 관한 연구)

  • Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.661-666
    • /
    • 2005
  • Recent warnings indicate that there is a potential risk of massive earthquake. These earthquakes could produce large-scale tsunamis. Consideration of the effect of Tsunami to the moored ship is very important bemuse it brings the loss of life and vast property damage in a viewpoint of ship operations within a harbor. If a tsunami occurs, a ship in a harbor may begin drifting in case of ship entering and departing harbor, and breakage of mooring rope and drifting of moored ship are happened. And extremely serious accident, such as stranding and collision to a quay, might occur. On the other hand, since the tsunami consists of approximately component waves of several minutes, there is a possibility of resonance with the long period motion of mooring vessel. As the speed of Tsunami is much faster than tidal current in a harbor, a strong resisting force might act on the moored ships. In this paper, the numerical simulation procedure in the matter of ship motions due to the attack of large-scale tsunamis are investigated and the effects on the ship motions and mooring loads are evaluated by numerical simulation.

Three-Dimensional Laboratory Experiments for Tsunami Inundation in a Coastal City (지진해일 범람이 해안도시에 미치는 영향에 대한 3차원 수리모형실험)

  • Kim, Kyuhan;Park, Hyoungsu;Shin, Sungwon;Cox, Daniel T.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.400-403
    • /
    • 2012
  • Laboratory experiments were conducted for tsunami inundation to an urban area with large building roughness. The waterfront portion of the city of Seaside which is located on the US Pacific Northwest coast, was replicated in 1/50 scale in the wave basin. Tsunami heights and velocities on the inundated land were measured at approximately 31 locations for one incident tsunami heights with an inundation height of approximately 10 m (prototype) near the shoreline. The inundation pattern and speed were more severe and faster in some areas due to the arrangement of the large buildings. Momentum fluxes along the roads were estimated using measure tsunami inundation heights and horizontal fluid velocities. As expected, the maximum momentum flux was near the shoreline and decreased landward. Inundation heights and momentum flux were slowly decreased through the road with buildings on each side. The results from this study showed that the horizontal inundation velocity is an important factor for the external force of coastal structures.

Numerical Simulation of Tsunami Force Acting on Onshore Bridge (for Tsunami Bore) (연안교량에 작용하는 지진해일파력에 관한 수치시뮬레이션(단파의 경우))

  • Lee, Kwang-Ho;Woo, Kyung-Hwan;Kim, Do-Sam;Jeong, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.46-61
    • /
    • 2017
  • In the present work, the interaction analysis between tsunami bore and onshore bridge is approached by a numerical method, where the tsunami bore is generated by difference of upstream side and downstream side water levels. Numerical simulation in this paper was carried out by TWOPM-3D(three-dimensional one-field model for immiscible two-phase flows), which is based on Navier-Stokes solver. In order to verify the applicability of force acting on an onshore bridge, numerical results and experimental results were compared and analyzed. From this, we discussed the characteristics of horizontal force and vertical force(uplift force and downward force) changes including water level and velocity change due to the tsunami bore strength, water depth, onshore bridge form and number of girder. Furthermore, It was revealed that the entrained air in the fluid flow highly affected the vertical force.

Anomalous Variations in Atmospheric Carbon Monoxide Associated with the Tsunami

  • Retnamayi, Anjali;Ganapathy, Mohan Kumar;Santha, Sreekanth Thulaseedharan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • Variations in ambient atmospheric carbon monoxide(CO) observed at an inland mining site in the Indo-Gangetic plains, Jaduguda ($22^{\circ}38'N$, $86^{\circ}21'E$, 122m MSL, ~75 km away from the coast of the Bay of Bengal) during the Tsunami of 26 December 2004 were monitored. CO mixing ratio over this site was measured using a non-dispersive infrared analyzer (Monitor Europe Model 9830 B). Back trajectory analysis data obtained using NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model was also used for this study. Variations in CO mixing ratio at a coastal site, Thiruvananthapuram ($8^{\circ}29'N$, $76^{\circ}57'E$, located ~2 km from the Arabian Sea coast) have also been investigated using CO data retrieved from the Measurement Of Pollution In The Troposphere (MOPITT) instrument. Ground-based measurements indicated abnormal variations in CO mixing ratio at Jaduguda from 25 December 2004 evening (previous day of the Tsunami). MOPITT CO data showed an enhancement in CO mixing ratio over Thiruvananthapuram on the Tsunami day. Back trajectory analyses over Thiruvananthapuram and Jaduguda for a period of 10 days from $21^{st}$ to $30^{th}$ December 2004 depicted that there were unusual vertical movements of air from high altitudes from 25 December 2004 evening. CO as well as the back trajectory analyses data showed that the variations in the wind regimes and consequently wind driven transport are the most probable reasons for the enhancement in CO observed at Jaduguda and Thiruvananthapuram during the Tsunami.