• Title/Summary/Keyword: trypsin purification

Search Result 67, Processing Time 0.025 seconds

Purification and characterization of β-secretase inhibitory peptide from sea hare (Aplysia kurodai) by enzymatic hydrolysis

  • Lee, Jung Kwon;Kim, Sung Rae;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.13.1-13.8
    • /
    • 2018
  • Amyloid plaque, also called senile plaque, the product of aggregation of ${\beta}$-amyloid peptides ($A{\beta}$), is observed in brains of the patients with Alzheimer's disease (AD) and is one of the key factors in etiology of the disease. In this study, hydrolysates obtained from the sea hare (Aplysia kurodai) were investigated for ${\beta}$-secretase inhibitory peptide. The sea hare's muscle protein was hydrolyzed using six enzymes in a batch reactor. Trypsin hydrolysate had highest ${\beta}$-secretase inhibitory activity compared to the other hydrolysates. ${\beta}$-secretase inhibitory peptide was separated using Sephadex G-25 column chromatography and high-performance liquid chromatography on a C18 column. ${\beta}$-secretase inhibitory peptide was identified as eight amino acid residues of Val-Ala-Ala-Leu-Met-Leu-Phe-Asn by N-terminal amino acid sequence analysis. $IC_{50}$ value of purified ${\beta}$-secretase inhibitory peptide was $74.25{\mu}M$, and Lineweaver-Burk plots suggested that the peptide purified from sea hare muscle protein acts as a competitive inhibitor against ${\beta}$-secretase. Results of this study suggest that peptides derived from sea hare muscle may be beneficial as anti-dementia compounds in functional foods or as pharmaceuticals.

Screening and Purification of an Antimicrobial Peptide from the Gill of the Manila Clam Ruditapes philippinarum (바지락(Ruditapes philippinarum) 아가미로부터 항균 펩타이드의 탐색 및 정제)

  • Seo, Jung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.137-145
    • /
    • 2016
  • This study screened the biological activity of an acidified gill extract of the Manila clam Ruditapes philippinarum including antimicrobial, hemolytic, membrane permeabilization, and DNA-binding activity, and purified the antimicrobial material. The acidified gill extract showed potent antimicrobial activity against Bacillus subtilis and Escherichia coli without significant hemolytic activity, but showed no membrane permeabilization or DNA-binding ability. An antimicrobial material was purified from the acidified gill extract using C18 reversed-phase and cation-exchange high-performance liquid chromatography (HPLC). Treatment of the purified material with trypsin completely abolished all of the antibacterial activity against Bacillus subtilis, suggesting that the purified material is a proteinaceous antibiotic. The molecular weight of the purified material was 2571.9 Da, but no primary structural information was obtained due to N-terminal blocking. A future study should confirm the primary structure. Our results suggest that the Manila clam gill contains proteinaceous antibiotics that have a role in first-line defense. This information could be used to better understand the Manila clam innate immune system.

Purification and Characterization of a Collagenase from the Mackerel, Scomber japonicus

  • Park, Pyo-Jam;Lee, Sang-Hoon;Byun, Hee-Guk;Kim, Soo-Hyun;Kim, Se-Kwon
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.576-582
    • /
    • 2002
  • Collagenase from the internal organs of a mackerel was purified using acetone precipitation, ion-exchange chromatography on a DEAE-Sephadex A-50, gel filtration chromatography on a Sephadex G-100, ion-exchange chromatography on DEAE-Sephacel, and gel filtration chromatography on a Sephadex G-75 column. The molecular mass of the purified enzyme was estimated to be 14.8 kDa by gel filtration and SDS-PAGE. The purification and yield were 39.5-fold and 0.1% when compared to those in the starting-crude extract. The optimum pH and temperature for the enzyme activity were around pH 7.5 and $55^{\circ}C$, respectively. The $K_m$ and $V_{max}$ of the enzyme for collagen Type I were approximately 1.1 mM and 2,343 U, respectively. The purified enzyme was strongly inhibited by $Hg^{2+}$, $Zn^{2+}$, PMSF, TLCK, and the soybean-trypsin inhibitor.

BEAD BASED CHEMICAL REACTION SYSTEM USING TEMPERATURE AND FLUID CONTROL FOR CANCER DETECTION (유체와 온도 조절을 이용한 생화학 물질 반응용 마이크로칩의 개발)

  • Kim, Min-Su;Lee, Bo-Rahm;Yoon, Hyo-Jin;Kim, Byung-Gee;Lee, Yoon-Sik;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1466-1467
    • /
    • 2008
  • We describe here a novel micro total analysis system for the purification and identification of the affinity-captured proteins. Also we demonstrated the mass analysis of the Carcinoembrionic antigen (CEA) and Alpha femtoprotein which were chosen as the target cancer marker. For MALDI-TOF analyses, the proteins should to be separated from a protein mixture and be concentrated when needed. This procedure usually takes a long time even before protease-digested samples are to be obtained from them. Here, we describe integrated and efficient micro chip for protein purification and digestion for MALDI-TOF analyses. At first, disease protein is purified by passing the micro chamber from a protein mixture or human whole serum and released from the micro affinity beads by thermal heating. Purified protein is then transfer to the hole for trypsin digestion. The final sample is analyzed by MALDI-TOF. All the processes could be finished successfully within one hour, which renders MALDI-TOF analyses of a target protein quite simple.

  • PDF

Identification of Streptomyces misakiensis Producing Cathepsin B Inhibitor and the Purification of Inhibitor (Cathepsin B 저해물질을 생산하는 Streptomyces misakinesis의 동정 및 저해물질의 분리)

  • 한길환;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.25-30
    • /
    • 2001
  • A strain of Actinomycetes producing cathepis B inhibitor was isolated from soil and identified as Streptomyces misakiensis. The product of S. misakiensis inhibited effectively cathepsis B proteinases as well as trypsin and papain. The cathepsin B inhibitor were largely produced with incubation for 4 days. The S. misakiensis was the most growth with incubation for 5 days. The cathepsin B inhibitor was isolated from the extraction of both with ethanol, ethanol and chlorofrom, and following several column chromatography such as sephadex G-15, silica gel 60 and sephadex LH-20 chromatography. The moleculer weight of purfied inhibitor was 138 dalton.

  • PDF

Purification of an ACE Inhibitory Peptide from Hydrolysates of Duck Meat Protein

  • Kim, So-youn;Kim, Sun-hye;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.66-69
    • /
    • 2003
  • An angiotensin converting enzyme (ACE) inhibitory peptide was isolated and purified from the hydrolysates of duck meat protein. Duck meat protein was hydrolyzed using trypsin at 37$^{\circ}C$ for 2 hrs. An ACE inhibitory peptide was purified using membrane filtration, anion exchange chromatography, gel permeation chromatography, fast protein liquid chromatography, normal phase HPLC. The purified inhibitory peptide was identified to be a tetrapeptide, Glu-Asp-Leu-Glu having $IC_{50}$/ value of 85.9 $\mu$M.

Rat Liver 10-formyltetrahydrofolate Dehydrogenase, Carbamoyl Phosphate Synthetase 1 and Betaine Homocysteine S-methytransferase were Co-purified on Kunitz-type Soybean Trypsin Inhibitor-coupled Sepharose CL-4B

  • Kim, Hyun-Sic;Kim, Ji-Man;Roh, Kyung-Baeg;Lee, Hyeon-Hwa;Kim, Su-Jin;Shin, Young-Hee;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.604-609
    • /
    • 2007
  • An Asp/His catalytic site of 10-formyltetrahydrofolate dehydrogenase (FDH) was suggested to have a similar catalytic topology with the Asp/His catalytic site of serine proteases. Many studies supported the hypothesis that serine protease inhibitors can bind and modulate the activity of serine proteases by binding to the catalytic site of serine proteases. To explore the possibility that soybean trypsin inhibitor (SBTI) can recognize catalytic sites of FDH and can make a stable complex, we carried out an SBTI-affinity column by using rat liver homogenate. Surprisingly, the Rat FDH molecule with two typical liver proteins, carbamoyl-phosphate synthetase 1 (CPS1) and betaine homocysteine S-methyltransferase (BHMT) were co-purified to homogeneity on SBTI-coupled Sepharose and Sephacryl S-200 followed by Superdex 200 FPLC columns. These three liver-specific proteins make a protein complex with 300 kDa molecular mass on the gel-filtration column chromatography in vitro. Immuno-precipitation experiments by using anti-FDH and anti-SBTI antibodies also supported the fact that FDH binds to SBTI in vitro and in vivo. These results demonstrate that the catalytic site of rat FDH has a similar structure with those of serine proteases. Also, the SBTI-affinity column will be useful for the purification of rat liver proteins such as FDH, CPS1 and BHMT.

Purification and Characterization of Serine Protease Inhibitors from Dolichos lablab Seeds; Prevention Effects on Pseudomonal Elastase-Induced Septic Hypotension

  • Koo, Sun-Hyang;Choi, Yun-Lim;Choi, Su-Kyung;Shin, Young-Hee;Kim, Byeong-Gee;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.112-119
    • /
    • 2000
  • Three kinds of serine protease inhibitors, members of the Bowman-Birk trypsin inhibitor, were purified from Dolichos lablab seeds and named Dolichos protease inhibitor 1, 2 and 3 (DI-1, DI-2 and DI-3), respectively. Each inhibitor showed a single band with gel mobility at around 15.9, 12.1 and 14.6 kDa on 20% SDS-PAGE under reducing conditions. To characterize inhibitory specificity, the inhibition constant (Ki) for these inhibitors was measured against several known serine proteases. All three Dolichos protease inhibitors (DI-1, DI-2 and DI-3) inhibited the activity of trypsin and plasmin, but had no effect on thrombin and kallikrein (either for human plasma kallikrein or for porcine pancreas kallikrein). DI-1 inhibited chymotrypsin most effectively (Ki = $3.6{\times}10^{-9}\;M$), while DI-2 displayed inhibitory activity for porcine pancreatic elastase (Ki = $6.2{\times}10^{-8}\;M$). Pre-treatment of the 33 mg/kg of DI-mixture (active fractions from $C_{18}$ open column chromatography that included DI-1, DI-2 and DI-3) inhibited the induction of pseudomonal elastase-induced septic hypotension and prevented an increase in bradykinin generation in pseudomonal elastase-treated guinea pig plasma. Also, the increase of kallikrein activity, by injection of pseudomonal elastase, was inhibited by the pretreatment of the DI-mixture in a guinea pig. Since the DI-mixture had no inhibitory effect on kallikrein activity when Z-Phe-Arg-MCA was used as a substrate in vitro, its inhibitory activity in the pseudomonal elastase-induced septic hypotension model might not be due to a direct inhibition of plasma kallikrein in the activation cascade of the Hageman factor and prekallikrein system. These results suggest that the Dolichos DI-mixture might be used as an inhibitor in pathogenic bacterial protease-induced septic shock.

  • PDF

Expression, Purification and Functional and structural relationship of pyruvate dehydrogenase phosphatase

  • Kim, Young-Mi;Jung, Ki-Hwa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.236-236
    • /
    • 2002
  • Pyruvate dehydrogenase phosphatase (PDP) is a mitochondrial protein serine/threonine phosphatase that catalyzes the dephosphorylation and concomitant reactivation of the pyruvate dehydrogenase componant of the pyruvate dehydrogenase complex (PDC). PDP consists of a Mg$\^$+2/ -dependent and Ca$\^$+2)-stimulated catalytic subunit (PDPc) of Mr 52,600 and a FAD-containing regulatory subunit (PDPr) of Mr 95.600. Catalytic subunit of pyruvate dehydrogenase phosphatase (PDPc) has been suggested to have three major functional domains such as dihydrolipoamide acetyltransferase(E$_2$)-binding domain, regulatory subunit of PDP(PDPr)-binding domain, and calcium-binding domain. In order to identify functional domains, recombinant catalytic subunit of pyruvate dehydrogenase phosphatase (rPDPc) was expressed in E. coli JM101 and purified to near homogeneity using the unique property of PDPc: PDPm binds to the inner lipoyl domain (L$_2$) of E$_2$ of pyruvate dehydrogenase complex (PDC) in the presence of Ca$\^$+2/, not under EGTA. PDPc was limited-proteolysed by trypsin, chymotrypsin, Arg-C, and elastase at pH7.0 and 30$^{\circ}C$ and N-terminal analysis of the fragment was done. Chymotrypsin, trypsin, and elastase made two major framents: N-terminal large fragment, approx. 50kD and C-terminal small fragment, approx. 0 kDa. Arg-C made three major fragments: N-terminal fragment, approx. 35 kD, and central fragment, approx. 15 kD, and C-terminal fragment, approx. 10 kD. This study strongly suggest that PDPc consists of three major functional domains. However, further study should be necessary to identify the functional role.

  • PDF

Partial Purification of Lectin from Mycoparasitic Species of Trichoderma

  • Singh, Tanuja;Saikia, Ratul;Arora, Dilip K.
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.301-309
    • /
    • 2005
  • Trichoderma species/isolates exhibited varied degree of agglutination on sclerotial (Sc) and hyphal (Hy) surface of Macrophomina phaseolina. The agglutination efficiencies on Sc and Hy ranged from $11\;to\;57\%$. Isolates of T. harzianum (Th) and T. viride (Tv) showed greater agglutination on Sc ($23-57\%$) and Hy ($16-47\%$). Different enzymes (trypsin, pepsin, proteinase k, a-chymotrypsin, lyticase and glucosidase) and inhibitors (tunicamycin, cycloheximide, brefeldin A, sodium azide, dithiothreitol and SDS) reduced the agglutination potential of conidia of Th-23/98 and Tv-25/98; however, the extent of response varied greatly in different treatments. Different fractions of Th-23/98 and Tv-25/98 exhibited haemagglutinating reaction with human blood group A, B, AB and O. Haemagglutinating activity was inhibited by different sugars and glycoproteins tested. Crude haemagglutinating protein from outer cell wall protein fraction of Th-23/98 and Tv-25/98 were eluted on Sephadex G-100 column. Initially Th-23/98 and Tv-25/98 exhibited two peaks showing no agglutination activity; however, lectin activity was detected in the third peak. Similar to crude lectin, the purified lectin also exhibited haemagglutinating activity with different erythrocyte source. SDS-PAGE analysis of partially purified lectin revealed single band with an estimated molecular mass of 55 and 52 kDa in Th-23/98 and Tv-25/98, respectively. Trypsin, chymotrypsin and b-1,3-glucanase totally inhibited lectin activity. Similarly, various pH also affected the haemagglutinating activity of Th-23/98 and Tv-25/98. From the present observations, it can be concluded that the recognition/attachment of mycoparasite (T. harzianum and T. viride) to the host surface (M. phaseolina) may be most likely due to lectin-carbohydrate interaction.