• Title/Summary/Keyword: truss design

Search Result 488, Processing Time 0.021 seconds

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Optimization of Satellite Structures by Simulated Annealing (시뮬레이티드 어닐링에 의한 인공위성 구조체 최적화)

  • Im Jongbin;Ji Sang-Hyun;Park Jungsun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.262-269
    • /
    • 2005
  • Optimization of a satellite structure under severe space launching environments is performed considering various design constraints. Simulate annealing, one of combinatorial optimization techniques, is used to optimize the satellite. The optimization results by the simulated annealing are compared to those by the method of modified feasible direction and genetic algorithm. Ten bar truss structure is optimized for feasibility study of the simulated annealing. Finally, the satellite structure is optimized by the simulated annealing algorithm under space environment. Weights of the satellite upper platform and propulsion module are minimized with consideration of several static and dynamic constraints. MSC/NASTRAN is used to find the static and dynamic responses. Simulated annealing has been programmed and integrated with the finite element analysis program for optimization. It is shown that the simulated annealing algorithm can be extended to the optimization of space structures.

Displacement Evaluation on the Reinforced Concrete Shear Wall (철근 콘크리트 전단벽의 변형성능 평가)

  • 김정식;최윤철;서수연;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.185-190
    • /
    • 2002
  • Recently, a concern to verify the displacement capacity of shear wall has been arised to produce suitable data for the performance based design. In this paper, a process is presented In evaluate the displacement capacity of shear wall. The displacement of shear wall is expressed as the superpositopn of shear and flexural deformation. Variable crack angle truss model with a modification and existing analysis program(XTRACT) are used in calculating shear and flexural displacement, respectively. The accuracy of proposed method is evaluated by the comparison calculation results with previous test results. From the comparison, it was shown that the displacement capacity of shear wall could be well predicted by using the process.

  • PDF

The Optimum Design of Truss Dome Structures by Evolution Strategy (진화전략을 이용한 트러스 돔 구조물의 최적설계)

  • Han, Sang-Eul;Kim, Man-Jung;Lee, Jae-Young;Ryu, Ji-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.396-399
    • /
    • 2009
  • 본 논문의 연구 목적은 생물의 진화 현상을 모방한 진화전략 알고리즘을 이용하여 돔형 트러스 구조물을 최적화 설계하는 것이다. 최적화 방법으로 부재 단면적의 최적화 값을 찾음으로써 최적 목적값 또는 최소 구조물 중량을 산출하는데 목적이 있다. 진화전략 알고리즘은 1960년대 중반, 실수기반 매개변수의 최적화로부터 소개되어 1970년대 많은 발전을 하였다. 진화전략은 컴퓨터 시스템 최적화 알고리즘 연구분야에서 많이 활용되며, 더불어 사용되는 유전자 알고리즘과는 다른 몇 개의 연산자를 가지고 있다. 본 논문에서는 진화전략에서 사용되는 연산자를 소개하고 연산자간의 논리 흐름과 수치예제로써 최적설계의 적합성을 확인해볼 수 있다.

  • PDF

Welcome the Challenges and Imaging the Sky Town

  • Cheng, Jiang Huan
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.271-277
    • /
    • 2017
  • Safety, livability, and efficiency are the three prominent problems of tall buildings, which are also the severe challenges to designers. We proposed the idea of building the sky town to solve these problems, which can be summarized in two sentences, one is tall building multi-storised, and another one is vertical facilities municipal-infrastructurised. The tall building can be horizontally cut into several multi-storey buildings by some large platforms. The platform extends a certain width to block the fire from spreading. Tall buildings are connected together as a group. One of them is a traffic core, which is used for vertical transportation and MEP. It connects to traffic center such as metro, while most of the other tall buildings' cores can be very much released, so as to achieve maximum efficiency of floor usable area and to give good traffic organization. By combining traffic core, platforms, and multi-storey buildings' inner traffic, a transportation network is formed. Finally, we refer to the design of Raffles City Chongqing to make a sketch of sky town.

Analysis of Wire-Mesh Half Slab by Layer Model (Layer모델에 의한 와이어 메쉬 하프슬래브의 해석)

  • Yi, Waon-Ho;Lee, Li-Hyung;Chung, Lan;Park, Chil-Lim
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.73-80
    • /
    • 1994
  • This paper is to study the mechanical behavor and structural safety of the wire-mesh half slab by an analytical method. Layer model was adopted by modelling the wire-mesh half slab as a flexural member composed of free cantilever beam and vertical supports (walls or beams). Reasonable results for the prediction of ultimate strength of the half stab at each loading direction and design recommendations for the reinforcement detail at wall(beam)-slab joints are acquired. On the other hand, ductility capacity of the wire-mesh half slab was overestimated by not considering the brittleness of wire-mesh reinforcements pre-manufactured at the form of Kaiser Truss.

  • PDF

A Study on the Weight-saving Design of the Boom in High Ladder Vehicle (고층 사다리차 붐의 경량화 설계에 관한 연구)

  • Kim, Jin-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.8-13
    • /
    • 2007
  • The purpose of this study is to reduced the weight of ladder boom and to improve the manufactor process by the section modification. The Conventional model consists of integral section stiffener, while the proposed model consists of truss type stiffener to reduce the weight of ladder boom and wind effector. In the two analysis models, one is based on the single boom, and the other is based in the coupling model of two booms. We present the analysis results for the case when applying the weight, bending and twisting moment and wind pressure. Finally, a comparison between these results is presented to show the performance of our method.

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.

Development of a Stress Path Search Model of Evolutionary Structural Optimization Using TIN (점진적 최적화 기법에서 불규칙 삼각망을 이용한 평면구조의 응력경로 탐색모델의 개발)

  • Kim, Nam-Su;Lee, Jeong-Jae;Yoon, Seong-Soo;Kim, Yoon-Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.65-71
    • /
    • 2004
  • Stress Path Search Model of Evolutionary Structural Successive Optimization (SPSMESO) using Triangular Irregular Network(TIN) was developed for improving over burden at initial design of ESO and strict stress direction of strut-and-tie model and truss model. TIN was applied for discretizing structures in flexible stress path and segments of TIN was analyzed as one-dimensional line element for calculating stress. Finally, stress path was searched using ESO algorithm. SPSMESO was efficient to express the direction of stress for 2D structure and time saving.

Optimization of trusses under uncertainties with harmony search

  • Togan, Vedat;Daloglu, Ayse T.;Karadeniz, Halil
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.543-560
    • /
    • 2011
  • In structural engineering there are randomness inherently exist on determination of the loads, strength, geometry, and so on, and the manufacturing of the structural members, workmanship etc. Thus, objective and constraint functions of the optimization problem are functions that depend on those randomly natured components. The constraints being the function of the random variables are evaluated by using reliability index or performance measure approaches in the optimization process. In this study, the minimum weight of a space truss is obtained under the uncertainties on the load, material and cross-section areas with harmony search using reliability index and performance measure approaches. Consequently, optimization algorithm produces the same result when both the approaches converge. Performance measure approach, however, is more efficient compare to reliability index approach in terms of the convergence rate and iterations needed.