• Title/Summary/Keyword: truss connector

Search Result 14, Processing Time 0.016 seconds

Structural behavior of sandwich composite wall with truss connectors under compression

  • Qin, Ying;Chen, Xin;Zhu, Xingyu;Xi, Wang;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.159-169
    • /
    • 2020
  • Sandwich composite wall consists of concrete core attached by two external steel faceplates. It combines the advantage of steel and concrete. The appropriate composite action between steel faceplate and concrete core is achieved by using adequate mechanical connectors. This research studied the compressive behavior of the sandwich composite walls using steel trusses to bond the steel faceplates to concrete infill. Four short specimens with different wall width and thickness of steel faceplate were designed and tested under axial compression. The test results were comprehensively evaluated in terms of failure modes, load versus axial and lateral deformation responses, resistance, stiffness, ductility, strength index, and strain distribution. The test results showed that all specimens exhibited high resistance and good ductility. Truss connectors offer better restraint to walls with thinner faceplates and smaller wall width. In addition, increasing faceplate thickness is more effective in improving the ultimate resistance and axial stiffness of the wall.

Behavior of L-shaped double-skin composite walls under compression and biaxial bending

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.405-418
    • /
    • 2020
  • The application of double-skin composite wall should meet different layout plans. However, most available research focused on the rectangular section with uniform axial compression. In this research, the structural behavior of double-skin composite wall with L section was studied. Due to the unsymmetric geometric characteristics, the considered loading condition combined the axial compression and biaxial bending. Five specimens were designed and tested under eccentric compression. The variables in the test included the width of the web wall, the truss spacing, the thickness of the steel faceplate, and the thickness of the web wall. The test results were discussed in terms of the load-displacement responses, buckling behavior, stiffness, ductility, strength utilization, strain distribution. Two modern codes were employed to predict the interaction between the axial compression and the biaxial bending. The method to calculate the available bending moment along the two directions was proposed. It was found that CECS 159:2004 offers more suitable results than AISC 360.

Push-out Performance Test of Composite Steel Truss Deck using Light Weight Concrete (경량콘크리트를 사용한 합성 철선트러스 데크의 푸쉬 아웃 성능 실험)

  • Choi, Byong Jeong;Moon, Hyo Jin;Han, Hong Soo;Han, Kweon Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • Push-out tests were performed to evaluate the shear capacity of a composite steel truss deck slab system, called an automatic prefabrication bar-mesh system, using lightweight concrete. The six specimens were classified into three groups: DP, NDP, and Solid, according to the variations between the bar mesh and the zinc plate automatic prefabrications. This paper focused on the failure behaviors, load-displacement characteristics, and a performance comparison based on design codes.

Behavior Characteristics of U-Shape Wide Composite Beam (U자형 와이드 합성보의 거동특성)

  • Choi, Yun-Cheul;Lee, Sang-Sup;Choi, Hyun-Ki;Park, Keum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.125-133
    • /
    • 2017
  • A parking structure has been on the spotlight to solve the parking problem in downtown area. However, the overall height of parking structure is stipulated less than 8m. Therefore, in this research, the flexural and shear capacity of 'wide composite beam' which can reduce story height and have long span, is evaluated. Based on test result, the rebar in truss did not affect its flexural strength. However, in the case of the specimen without the rebar, the mechanical bond strength decreased due to slip occurrence at 70% of the flexural yield strength. Based on the test of shear-bond behavior, all specimen without shear connector should be reinforced with 2 or more flat bar, because it did not have enough shear bond strength resisted by the mechanical bond mechanism.