• 제목/요약/키워드: trunk motion

검색결과 255건 처리시간 0.02초

교각운동 시 복부 드로잉-인 방법이 요부 전만과 체간 및 하지의 근 활성도에 미치는 영향 (The Influence of Abdominal Drawing-In Maneuver on Lumbar Lordosis and Trunk and Lower Extremity Muscle Activity During Bridging Exercise)

  • 김은옥;김택훈;노정석;신헌석;최홍식;오동식
    • 한국전문물리치료학회지
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2009
  • An abdominal drawing-in maneuver (ADIM) with a pressure biofeedback unit can be used to prevent excessive lumbar lordosis during bridging exercise. Therefore, in this research, the effects of an ADIM on lumbar lordosis and lower extremity muscle activity during bridging exercise were investigated in thirty healthy adults. Surface electromyography (EMG) and VICON system were used to collect kinematic data and muscle activity, respectively. A paired t-test was used to determine a statistical significance. The results showed as follows: (1) When performing bridging exercise with an ADIM, the height of the anterior superior iliac spine and greater trochanter decreased significantly (p<.05). (2) When performing bridging exercise with an ADIM, the trunk extension angle and pelvic angle increased significantly (p<.05). (3) When performing bridging exercise with an ADIM, the EMG signal amplitude increased significantly in the rectus abdominis, internal oblique abdominis, external oblique abdominis, medial hamstring, and lateral hamstring (p<.05). (4) When performing bridging exercise with an ADIM, the EMG signal amplitude decreased significantly in the erector spinae (p<.05). From the result of this research, an ADIM trained with pressure biofeedback unit during bridging exercise is effective to prevent excessive contraction of erector spinae, to limit excessive motion of pelvis from sagittal plane and to increase muscle activity of abdominal muscles and hamstring muscle.

  • PDF

평행봉 2회전 뒤돌아 무릎 구부려 내리기 동작의 운동학적 분석 (Kinematic Analysis of Double Backward Somersault on the Parallel Bars)

  • 이종훈;이용식
    • 한국운동역학회지
    • /
    • 제14권1호
    • /
    • pp.27-40
    • /
    • 2004
  • The purpose of this study was to provide basic data for improving athletic performances by analyzing the kinematic variables of the Double Backward Somersault on the Parallel Bars through the 3D motion analysis. The subjects in this study were 5 male gymnasts who were ranked as national athletes. The results are as follows. 1. A total time(Mean Time) of performance showed $2.72{\pm}0.82\;sec$. and flight time to landing after releasing was 0.87sec.(mean). In order to perform better stable flying movement, the flight time should be increased. 2. In the change of velocity of the center of mass, when the increasing ascension velocity of the upper point was high, the position in the top point was high on releasing. 3. In the position variable of the center of mass, the mean of upper-bottom position in horizontal posture was $242.1{\pm}6.5cm$, $232.8{\pm}6.4cm$ in releasing, and $265.0{\pm}5.6cm$ in the highest point. This result is explained that the position of center of mass can be raised by using elastic power when wrist raised the bar in the releasing movement. 4. The angle of shoulder joint was $271.1{\pm}14.0$. Such a big angle influences a negative effect on the releasing velocity, because trunk is not a position in the enough vertical direction. 5. The ankle of hip joint in hand-standing was $191.1{\pm}5.9$, $118.8{\pm}5.3$ in releasing, and $122.3{\pm}5.3$ in taking on. Therefore, the result suggests that trunk should be straightly raised in taking on.

컴퓨터 디자인 기반 모노스키 버킷 사용에 따른 장애인 알파인 스키 선수의 운동학적 특성 변화 연구: 사례 연구 (Disabled Alpine Ski Athlete's Kinematic Characteristic Changes by Computer Aided Design Based Mono Ski Bucket: A Case Study)

  • 구도훈;은선덕;현보람;권효순
    • 한국운동역학회지
    • /
    • 제24권4호
    • /
    • pp.425-433
    • /
    • 2014
  • The purpose of the study was to investigate the effect of CAD (Computer Aided Design) based alpine mono-ski bucket design on disabled ski athletes' kinematic characteristics. Two national team ski athletes with LW11 disabilities (Locomotion Winter Classification) category for sit ski participated in both pre and post experiment. Both of the subjects performed 3 trials of carved turn on a ski slope under two conditions. Where, subject "A" performed pre experiment with personal bucket and post experiment with the newly developed CAD based bucket whereas, Subject "B" as control subject performed both pre and post experiment with his personal bucket. For the experiment, 24 Infrared cameras were positioned on the ski slope which covered the path of the ski turn. Also, motion capture suit with reflective markers were worn by both subjects. In the result, decrement in medial/lateral displacement of COM, anterior/posterior displacement of COM, flexion/extension angle of trunk as well as velocity losing rate of COM was observed in subject "A" when using the newly developed CAD based bucket. In contrast, no larger effect on performance was observed when using personal buckets. In conclusion, the findings obtained from the study indicated effectiveness of newly developed CAD based bucket by reducing excessive movement of hip and trunk which is an important factor to perform an effective turn.

플랫폼 다이빙 앞으로 서서 앞으로 11/2회전 동작의 운동역학적 분석 (A Kinetics Analysis of Forward 11/2 Somersault on the Platform Diving)

  • 전경규
    • 한국운동역학회지
    • /
    • 제23권3호
    • /
    • pp.209-218
    • /
    • 2013
  • This study was to perform the kinetic analysis of forward $1\frac{1}{2}$ somersault on the platform diving. Six men's diving players of the Korea national reserve athletes participated in this study. The variables were analyzed response time, velocity, center of mass (COM), angle, center of pressure (COP) and ground reaction force (GRF) of motion. For measure and analysis of this study, used to synchronized to 4 camcorder and 1 force plate, used to the Kwon3D XP (Ver. 4.0, Visol, Korea) and Kwon GRF (Ver. 2.0, Visol, Korea) for analyzed of variables. The results were as follows; Time factor were observed in maximum knee flexion depending on the extent of use at phase 1 of take-off to execute the somersault. This enabled the subject to secure the highest possible body position in space at the moment of jumping to execute the somersault and prepare for the entry into the water with more ease. Regarding the displacement of COM, all subjects showed rightward movement in the lateral displacement during technical execution. Changes in forward and downward movements were observed in the horizontal and vertical displacements, respectively. In terms of angular shift, the shoulder joint angle tended to decrease on average, and the elbow joints showed gradually increasing angles. This finding can be explained by the shift of the coordinate points of body segments around the rotational axis in order to execute the half-bending movement that can be implemented by pulling the lower limb segments toward the trunk using the upper limb segments. The hip joint angles gradually decreased; this accelerated the rotational movement by narrowing the distance to the trunk. Movement-specific shifts in the COP occurred in the front of and vertical directions. Regarding the changes in GRF, which is influenced by the strong compressive load exerted by the supporting feet, efficient aerial movements were executed through a vertical jump, with no energy lost to the lateral GRF.

The Effects of Sitting in a Crossed Legs Posture on the Vertebral Angle, Chest Wall Mobility, Pulmonary Function, and Respiratory Muscle Activity: A Preliminary Study

  • Ahn, Hee-Eun;Yoon, Tae-Lim
    • 대한물리의학회지
    • /
    • 제14권3호
    • /
    • pp.13-20
    • /
    • 2019
  • PURPOSE: Sitting with crossed legs may have an effect on maintaining a healthy body posture and proper functioning of the respiratory system. Thus, this study's objective was to identify whether or not sitting with crossed legs affects the vertebral angle, chest wall mobility, the pulmonary function, and the activity of the respiratory muscles. METHODS: Thirty healthy subjects were recruited for this study (16 males and 14 females). The vertebral angle, chest wall mobility, pulmonary function, and the activity of the respiratory muscle were measured while the subjects sat in the correct posture and these factors were again measured with the subjects seated with their legs crossed. Three-dimensional motion analysis was used to determine the trunk and lumbar vertebral angles. Surface electromyography was employed to measure the sternocleidomastoid, the rectus abdominis, and the external and internal oblique abdominis muscles. A tapeline was utilized to evaluate the subjects' chest wall mobility. Spirometry was assessed to determine the forced vital capacity and forced expiratory volume in one second. Paired t-tests were then performed (p<.05). RESULTS: There were significant differences in the trunk and lumbar flexion angles, the chest wall mobility, the activity of the right external oblique muscle, and the left internal oblique abdominis muscle. However, the difference in pulmonary function did not reach statistical significance. CONCLUSION: A crossed leg posture caused slight thoracic extension and lumbar flexion, which may lead to a decrease of the chest wall mobility and also to an imbalance of the abdominal muscles. Therefore, sitting with a crossed leg posture should be avoided. Yet a crossed leg posture did not have any clinical effect on the pulmonary function of healthy people. It may be necessary to study the effects of sitting with crossed legs over an extended period of time for patients suffering with impaired respiratory function.

Relationship Between a New Functional Evaluation Model and the Fugle-Meyer Assessment Scale for Evaluating the Upper Extremities of Stroke Patients

  • Kim, Jung-Hyun;Kim, Hyun-Jin;Lee, Seung-Gu;Song, Chang-Ho
    • PNF and Movement
    • /
    • 제18권3호
    • /
    • pp.305-313
    • /
    • 2020
  • Purpose: The aim of this study was to investigate the relationship between a functional evaluation model and the Fugl-Meyer assessment (FMA) scale in evaluating the upper extremities of stroke patients Methods: Thirty-eight stroke patients were evaluated using the FMA and performed reaching and grasping motions using a three-dimensional motion analysis (Qquas 1 series, Qualisys AB, Sweden). The participants sat on a chair with a backrest. The position of the cup was located at a distance of 80% to the front arm length. The markers were attached to the sternum, acromion, elbow lateral epicondyle, ulnar styloid process, three metacarpal heads, and the distal phalanges of the thumb and index finger. The variables of the correlation between the functional evaluation model and the FMA scale were analyzed. Multiple regression (stepwise) was used to investigate the effect of the kinematic variables. Results: A significant negative correlation was found between the movement time (p < 0.05), movement unit (p < 0.05), and trunk displacement values (p < 0.05) in the FMA total scores, while a positive correlation was found between the peak velocity (p < 0.05) and maximum grip aperture values (p < 0.05). As a result of the multiple regression analysis, the most significant factor was the movement unit, followed by the general movement assessment and trunk displacement. The explained FMA total score value was 62%. Conclusion: This study presents a new functional evaluation model for assessing the reaching and grasping ability of stroke patients. The factors of the proposed functional evaluation model showed significant correlations with the FMA scale scores and confirmed that the new functional evaluation model explained the FMA by 67%. This suggests a new functional evaluation model for reaching and grasping stroke patients.

안정 지지면과 슬링을 이용한 교각 자세에서 양발지지와 한발지지 동작 시 복부 근육 두께 비교 (Comparison of Abdominal Muscles Thickness During Both-Foot Support and One-Foot Support Motion in Bridge Exercises Using the Stable Surface and Sling)

  • 고하람;박서현;박종원;양선유;김진영
    • 대한정형도수물리치료학회지
    • /
    • 제28권2호
    • /
    • pp.7-14
    • /
    • 2022
  • Purposed: This study was conducted to find out by ultrasonic waves the thickness change of the deep abdominal muscles, such as transverse abdominal, internal oblique and external oblique when performing general bridge exercise on the stable surface (GBE), single-legged bridge exercise on the stable surface (BES), bridge exercise with a sling (SBE) and single-legged bridge exercise with a sling (SBS). Methods: The subject, 33 healthy adults(18 men and 15 women) in their 20s of V university in J city were subjected to take four postures of GBE, BES, SBE, and SBS. When performing each posture, the thickness of transverse abdominal, internal oblique and external oblique were measured by ultrasonic waves and analyzed by repeated measures of ANOVA. This significance level was set to be p<.05. Results: Muscle thickness was increased in the order of BES, SBE, and GBE in the external oblique, resulting in statistically significant differences(p<.001). The internal oblique was significantly thicker in SBE and SBS rather than in GBE, and was thicker in SBE and SBS rather than in BES (p<.01). The thickness of the transverse abdominal was significantly increased in SBS than in GBE (p<.01). Conclusion: As the result, it may be more effective for the trunk stabilization exercises to activate the internal oblique and transverse abdominal by applying both-legged or single-legged bridge exercise in slings.

Test-retest Reliability and Concurrent Validity of a Headphone and Necklace Posture Correction System Developed for Office Workers

  • Gyu-hyun Han;Chung-hwi Yi;Seo-hyun Kim;Su-bin Kim;One-bin Lim
    • 한국전문물리치료학회지
    • /
    • 제30권3호
    • /
    • pp.174-183
    • /
    • 2023
  • Background: Office workers experience neck or back pain due to poor posture, such as flexed head and forward head posture, during long-term sedentary work. Posture correction is used to reduce pain caused by poor posture and ensures proper alignment of the body. Several assistive devices have been developed to assist in maintaining an ideal posture; however, there are limitations in practical use due to vast size, unproven long-term effects or inconsistency of maintaining posture alignment. We developed a headphone and necklace posture correction system (HANPCS) for posture correction using an inertial measurement unit (IMU) sensor that provides visual or auditory feedback. Objects: To demonstrate the test-retest reliability and concurrent validity of neck and upper trunk flexion measurements using a HANPCS, compared with a three-dimensional motion analysis system (3DMAS). Methods: Twenty-nine participants were included in this study. The HANPCS was applied to each participant. The angle for each action was measured simultaneously using the HANPCS and 3DMAS. The data were analyzed using the intraclass correlation coefficient (ICC) = [3,3] with 95% confidence intervals (CIs). Results: The angular measurements of the HANPCS for neck and upper trunk flexions showed high intra- (ICC = 0.954-0.971) and inter-day (ICC = 0.865-0.937) values, standard error of measurement (SEM) values (1.05°-2.04°), and minimal detectable change (MDC) values (2.92°-5.65°). Also, the angular measurements between the HANPCS and 3DMAS had excellent ICC values (> 0.90) for all sessions, which indicates high concurrent validity. Conclusion: Our study demonstrates that the HANPCS is as accurate in measuring angle as the gold standard, 3DMAS. Therefore, the HANPCS is reliable and valid because of its angular measurement reliability and validity.

승마 속보 시 미숙련자에게 적용한 하지장 비율 74.04% 등자길이 피팅의 기승자세 효과 (The Effects of the Stirrup Length Fitted to the Rider's Lower Limb Length on the Riding Posture for Less Skilled Riders during Trot in Equestrian)

  • 현승현;류재청
    • 한국운동역학회지
    • /
    • 제25권3호
    • /
    • pp.335-342
    • /
    • 2015
  • Objective : The purposes of this study was to analyze the effects of the stirrup length fitted to the rider's lower limb length and it's impact on less skilled riders during trot in equestrian events. Methods : Participants selected as subjects consisted of less skilled riders(n=5, mean age: $40.02{\pm}10.75yrs$, mean heights: $169.77{\pm}2.08cm$, mean body weights: $67.65{\pm}7.76kg$, lower limb lengths: $97.26{\pm}2.35cm$, mean horse heights: $164.00{\pm}5.74cm$ with 2 type of stirrups lengths(lower limb ratio 74.04%, and 79.18%) during trot. The variables analyzed consisted of the displacement for Y axis and Z axis(head, and center of mass[COM]) with asymmetric index, trunk front-rear angle(consistency index), lower limb joint(Right hip, knee, and ankle), and average vertical forces of horse rider during 1 stride in trot. The 4 camcorder(HDR-HC7/HDV 1080i, Spony Corp, Japan) was used to capture horse riding motion at a rate of 60 frames/sec. Raw data was collected from Kwon3D XP motion analysis package ver 4.0 program(Visol, Korea) during trot. Results : The movements and asymmetric index didn't show significant difference at head and COM, Also, 74.04% stirrups lengths in trunk tilting angle showed significant difference with higher consistency than that of 79.18% stirrups lengths. Hip and knee joint angle showed significant difference with more extended posture than that of 74.04% stirrups lengths during trot. Ankle angle of 79.18% stirrups length showed more plantarflexion than that of 74.04% stirrups lengths. Average vertical force of rider showed significant difference with higher force at 79.18% stirrups lengths than that of 74.04% stirrups lengths during stance phase. Conclusion : When considering the above, 74.04% stirrups length could be effective in impulse reduction with consistent posture in rather less skilled horse riders.

케틀벨 스윙 시 적당한 케틀벨의 무게는 얼마일까? (What is the Appropriate Kettlebell Mass for a Kettlebell Swing?)

  • Kim, Bo Kyeong;Thau, Dao Van;Yoon, Sukhoon
    • 한국운동역학회지
    • /
    • 제31권4호
    • /
    • pp.308-313
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of different kettlebell mass (30%, 40%, and 50% of the body mass) on kinematics and kinetic variables of kettlebell swing. Method: Total of 16 healthy male who had at least 1 year of kettlebell training experience were participated in this study (age: 31.69 ± 3.46 yrd., height: 173.38 ± 4.84 cm, body mass: 74.53 ± 6.45 kg). In this study, a 13-segments whole-body model (upper trunk, lower trunk, pelvis, both side of forearm, upperarm, thigh, and shank) was used and 26 reflective markers were attached to the body to identify the segments during the movement. A 3-dimensional motion analysis with 8 infrared cameras and 4 channeled EMG was performed to find the effect of kettlebell mass on its swing. To verify the kettlebell mass effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at 𝛼=.05. Results: Firstly, in all lower extremity joints and thoracic vertebrae, a statistically significant change in angle was shown according to an increase in kettlebell mass during kettlebell swing (p<.05). Secondly, in both the up-swing and down-swing phases, the knee joint and ankle joint ROM showed a statistically significant increase as the kettlebell mass increased (p<.05) but no statistically significant difference was found in the hip joint and thoracic spine (p>.05). Lastly, the hamstrings muscle activity was statistically significantly increased as the kettlebell mass increased during up-swing phases (p<.05). Also, as the kettlebell mass increased in P4 of the down swing phase, the gluteus maximus showed a statistically significantly increased muscle activation, whereas the rectus femoris showed a statistically significantly decreased muscle activation (p <.05). Conclusion: As a result of this study, hip extension decreased and knee extension increased at 40% and 50% of body mass, and the spine also failed to maintain neutrality and increased flexion. Also, when kettlebell swings are performed with 50% of body mass, synergistic muscle dominance appears over 30% and 40% of body mass, which is judged to have a risk of potential injury. Therefore, it is thought that for beginners who start kettlebell exercise, swing practice should be performed with 30% of body mass. In addition, even in the case of experienced seniors, as the weight increases, the potential injury risk may increase, so it is thought that caution should be exercised when performing swings with 40% and 50% of body mass. In conclusion, it is thought that increasing the weight after sufficiently training with 30% of the weight of all subjects performing kettlebell swing is a way to maximize the exercise effect as well as prevent injury.