• Title/Summary/Keyword: true random number

Search Result 43, Processing Time 0.024 seconds

Characteristics of Nonpoint Source Pollutant Loads from Forest watershed with Various Water Quality Sampling Frequencies (수질샘플빈도에 따른 산림유역의 비점원오염부하특성)

  • Shin, Min-Hwan;Shi, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • A monsoon season monitoring data from June to September, 2005 of a small forested watershed located at the upstream of the North Han River system in Korea was conducted to analyze the flow variations, the NPS pollutant concentrations, and the pollution load characteristics with respect to sampling frequencies. During the 4-month period, 1,423 mm or 79.2% of annual rainfall(1,797 mm) were occurred and more than 77%, 54% and 68% of annual T-N, $NO_3$-N and T-P loads discharged. Flow rate was continuously measured with automatic velocity and water level meters and 58 water quality samples were taken and analyzed. It was analyzed that the flow volume by random measurement varied very widely and ranged from 79% to 218% of that of continuous measurement. It was recommended that flow measurement of small forested watersheds should be continuously measured with automated flow meters to precisely measure flow rates. Flow-weighted mean concentrations of T-N, $NO_3$-N and T-P during the period were 2.114 mg/L, 0.836 mg/L, and 0.136 mg/L, respectively. T-N, $NO_3$-N and T-P loads were sensitive to the number of samples. And it was analyzed that in order to measure the pollution load within the error of 10% to the true load, the rate of sampling frequency should be higher than 89.7% of the sample numbers that were required to compute the true pollution load. If it is compared to selected foreign research results, about 10 water samples for each rainfall event were needed to compute the pollution load within 10% error. It is unlikely in Korea and recommended that thorough NPS pollution monitoring studies are required to develop the standard monitoring procedures for reliable NPS pollution quantification.

Correlation Power Analysis Attack on Lightweight Block Cipher LEA and Countermeasures by Masking (경량 블록암호 LEA에 대한 상관관계 전력분석 공격 및 마스킹 대응 기법)

  • An, Hyo-Sik;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1276-1284
    • /
    • 2017
  • Lightweight Encryption Algorithm (LEA) that was standardized as a lightweight block cipher was implemented with 8-bit data path, and the vulnerability of LEA encryption processor to correlation power analysis (CPA) attack was analyzed. The CPA used in this paper detects correct round keys by analyzing correlation coefficient between the Hamming distance of the computed data by applying hypothesized keys and the power dissipated in LEA crypto-processor. As a result of CPA attack, correct round keys were detected, which have maximum correlation coefficients of 0.6937, 0.5507, and this experimental result shows that block cipher LEA is vulnerable to power analysis attacks. A masking method based on TRNG was proposed as a countermeasure to CPA attack. By applying masking method that adds random values obtained from TRNG to the intermediate data of encryption, incorrect round keys having maximum correlation coefficients of 0.1293, 0.1190 were analyzed. It means that the proposed masking method is an effective countermeasure to CPA attack.

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.

Application of universal kriging for modeling a groundwater level distribution 2. Restricted maximum likelihood method (지하수위 분포 모델링을 위한 UNIVERSAL KRIGING의 응용 2. 제한적 최대 우도법)

  • 정상용
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.51-61
    • /
    • 1993
  • Restricted maximum likelihood(RML) method was used to determine the parameters of generalized covariance, and universal krigig with RML was applied to estimate a groundwater level distribution of nonstationarv random function. Universal kriging with RML was compared to IRF-k with weighted least squares method for the comparison of their accuracies. Cross validation shows that two methods have nearly the same ability for the estimation of groundwater levels. Scattergram of estimates versus true values and contour maps of groundwater levels have nearly the same results. The reason why two methods produced the same results is thought to be the non-Gaussian distribution and the snaall number of sample data.

  • PDF

In Vitro Regeneration of Lycium chinense Miller and Detection of Silent Somaclones with RAPD Polymorphisms

  • Ahn, In-Suk;Park, Young-Goo;Shin, Dong-Ill;Sul, Ill-Whan
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.157-163
    • /
    • 2004
  • An efficient system for the regeneration of adventitious shoots from in vitro cultured leaf sections of Lycium chinense Miller was developed and silent somaclones from the regenerants detected with RAPD method. Among the eight media tested (B5, SH, N&N, 1/2MS, MS, 3/2MS, GD and WPM), and four cytokinins (BA, kinetin, 2ip and zeatin) with different concentrations (1, 5, 10, 20, 30 and 40 $\mu{M}$), 1/2 MS medium supplemented with 20 and 30 $\mu{M}$ zeatin showed the best regeneration frequency (100% and 93.7%) and higher average number of shoots (9.0 and 9.4). All regenerants easily elongated after subculturing on 1/4MS without growth stimulants and produced spontaneous adventitious roots from their basal parts. With phenotypically normal 40 regenerants, RAPD analysis with 15 different random primers was performed to examine the cryptic somaclonal variants. No substantial differences in banding patterns were found in the amplified polymorphic DNAs implying no DNA changes during dedifferentiation into adventitious shoots. However, one (OPF-4) of the 15 primers detected silent somaclonal variation in one regenerant in which two different polymorphic bands did not appear when compared with the rest regenerants. The results indicate that regenerantion via intervening callus phase can be used to establish true-to-type planting stocks for homogeneous population.

Privacy Information Protection Applying Digital Holography to Blockchain

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.453-462
    • /
    • 2022
  • Blockchain technology provides a decentralized and peer-to-peer network, which has the advantages of transparency and immutability. In this paper, a novel secure authentication scheme applying digital holography to blockchain technology is proposed to protect privacy information in network nodes. The transactional information of the node is chained permanently and immutably in the blockchain to ensure network security. By designing a novel two-dimensional (2D) array data structure of the block, a proof of work (PoW) in the blockchain is executed through digital holography technology to verify true authentication and legal block linkage. A hash generated from the proposed algorithm reveals a random number of 2D array data. The real identity of each node in the network cannot be forged by a hacker's tampering because the privacy information of the node is encrypted using digital holography and stored in the blockchain. The reliability and feasibility of the proposed scheme are analyzed with the help of the research results, which evaluate the effectiveness of the proposed method. Forgery by a malicious node is impossible with the proposed method by rejecting a tampered transaction. The principal application is a secure anonymity system guaranteeing privacy information protection for handling of large information.

A hidden Markov model for long term drought forecasting in South Korea

  • Chen, Si;Shin, Ji-Yae;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.225-225
    • /
    • 2015
  • Drought events usually evolve slowly in time and their impacts generally span a long period of time. This indicates that the sequence of drought is not completely random. The Hidden Markov Model (HMM) is a probabilistic model used to represent dependences between invisible hidden states which finally result in observations. Drought characteristics are dependent on the underlying generating mechanism, which can be well modelled by the HMM. This study employed a HMM with Gaussian emissions to fit the Standardized Precipitation Index (SPI) series and make multi-step prediction to check the drought characteristics in the future. To estimate the parameters of the HMM, we employed a Bayesian model computed via Markov Chain Monte Carlo (MCMC). Since the true number of hidden states is unknown, we fit the model with varying number of hidden states and used reversible jump to allow for transdimensional moves between models with different numbers of states. We applied the HMM to several stations SPI data in South Korea. The monthly SPI data from January 1973 to December 2012 was divided into two parts, the first 30-year SPI data (January 1973 to December 2002) was used for model calibration and the last 10-year SPI data (January 2003 to December 2012) for model validation. All the SPI data was preprocessed through the wavelet denoising and applied as the visible output in the HMM. Different lead time (T= 1, 3, 6, 12 months) forecasting performances were compared with conventional forecasting techniques (e.g., ANN and ARMA). Based on statistical evaluation performance, the HMM exhibited significant preferable results compared to conventional models with much larger forecasting skill score (about 0.3-0.6) and lower Root Mean Square Error (RMSE) values (about 0.5-0.9).

  • PDF

Probabilistic Analysis of AIS.31 Statistical Tests for TRNGs and Their Applications to Security Evaluations (진난수발생기용 난수성 검정 방법 AIS.31에 대한 확률론적 분석 및 보안성 평가 적용 방법)

  • Park, Hojoong;Kang, Ju-Sung;Yeom, Yongjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.1
    • /
    • pp.49-67
    • /
    • 2016
  • SP 800-90B of NIST(USA) and AIS.31 of BSI(Germany) are representative statistical tests for TRNGs. In this paper, we concentrate on AIS.31 which is under the ongoing international standardization process. We examine the probabilistic meaning of each statistic of the test in AIS.31 and investigate its probability distribution. By changing significance level and the length of sample bits, we obtain formalized accept region of the test. Furthermore we propose the accept regions for some iterative tests, that are not mentioned in AIS.31, and provide some simulations.

Design of Quantum Key Distribution System without Fixed Role of Cryptographic Applications (암호장치의 송·수신자 역할 설정이 없는 양자키분배 시스템 설계)

  • Ko, Haeng-Seok;Ji, Se-Wan;Jang, Jingak
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.771-780
    • /
    • 2020
  • QKD(Quantum Key Distribution) is one of the protocols that can make two distant parties safely share secure keys against the threat of quantum computer. Generally, cryptographic applications which are connected to the QKD device have fixed roles as a transmitter and a receiver due to the race condition and complexity of implementation. Because the conventional QKD system is mainly applied to the link encryptor, there are no problems even if the roles of the cryptographic devices are fixed. We propose a new scheme of QKD system and protocol that is easy to extend to the QKD network by eliminating quantum key dependency between cryptographic device and QKD node. The secure keys which are generated by the TRNG(True Random Number Generator) are provided to the cryptographic applications instead of quantum keys. We design an architecture to transmit safely the secure keys using the inbound and outbound quantum keys which are shared between two nodes. In this scheme, since the dependency of shared quantum keys between two QKD nodes is eliminated, all cryptographic applicatons can be a master or a slave depending on who initiates the cryptographic communications.

A Security SoC supporting ECC based Public-Key Security Protocols (ECC 기반의 공개키 보안 프로토콜을 지원하는 보안 SoC)

  • Kim, Dong-Seong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1470-1476
    • /
    • 2020
  • This paper describes a design of a lightweight security system-on-chip (SoC) suitable for the implementation of security protocols for IoT and mobile devices. The security SoC using Cortex-M0 as a CPU integrates hardware crypto engines including an elliptic curve cryptography (ECC) core, a SHA3 hash core, an ARIA-AES block cipher core and a true random number generator (TRNG) core. The ECC core was designed to support twenty elliptic curves over both prime field and binary field defined in the SEC2, and was based on a word-based Montgomery multiplier in which the partial product generations/additions and modular reductions are processed in a sub-pipelining manner. The H/W-S/W co-operation for elliptic curve digital signature algorithm (EC-DSA) protocol was demonstrated by implementing the security SoC on a Cyclone-5 FPGA device. The security SoC, synthesized with a 65-nm CMOS cell library, occupies 193,312 gate equivalents (GEs) and 84 kbytes of RAM.