• Title/Summary/Keyword: true density

Search Result 164, Processing Time 0.019 seconds

Study on Measurements of the Mandible BMD According to the ROI Variation (관심영역 변화에 따른 하악골 골밀도 측정에 대한 연구)

  • Tak, Jeong-Nam
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.271-276
    • /
    • 2009
  • The aim of this study was to evaluate the effect of Bone Mineral Density(BMD) at mandible. So, we studied how to measure the BMD at mandible using DEXA(Dual energy X-ray absorptiometry, DEXA) by Horner er al (1996) and knew reproducibility of the measurements. Thirty-five patients (13 men, 22 women, mean age : 25.4 years) were examined using the GE Lunar Prodigy Advance(LUNAR Corporation, madison, USA). They were examined in Semiprone position of their body and true lateral position of their mandible selected the Lumbar lateral mode. We used the custom mode in analysis when ROI (area $30{\times}2.5\;mm^2$). Three ROIs ($30{\times}2.5\;mm^2$, $50{\times}2.5\;mm^2$, $20{\times}2.5\;mm^2$) were located each at the two different sites of the mandible (angle of mandible and mental symphysis) and BMD was measured. Differences in BMD measurement was statistically compared according to the size and location of ROI. BMD was $1.320{\pm}0.358g/cm^3$ in men and was $1.152{\pm}0.340g/cm^3$ in women. BMD at the angle of mandible was $1.201{\pm}0.361g/cm^3$ in men and was $1.025{\pm}0.377g/cm^3$ in women. BMD of men at the mental symphysis was $1.434{\pm}0.341g/cm^3$ and that of women was $1.19{\pm}0.358g/cm^3$. With the ROI of $20{\times}2.5\;mm^2$, BMD was $1.262{\pm}0.384g/cm^3$ in men and was $1.113{\pm}0.357g/cm^3$ in women. With the ROI of $50{\times}2.5\;mm^2$, BMD of men was $1.320{\pm}0.358g/cm^3$ and that of women was $1.129{\pm}0.340g/cm^3$. There was a statistically significant difference of BMD according to the size and location of ROI. When measuring mandible BMD, there are good for increasing ROI and locate between ramus and mental symphysis. Especially following exam, refer to same size and location with fore exam. According to study which measure mandible BMD, It's correct to measure better a portion of mandible then whole of BMD. Using DEXA protocol is studied good for the additional study to compare the BMD at mandible. Later date, It will be good for measurement value in implant and bone graft quantitatively. Using DEXA method gain BMD threshold value in korean.

  • PDF

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

On the present bamboo groves of Cholla-nam-do and their proper treatment -No. 1. On the growing stock of reprsentative phyllostachys reticulata grove by county (전라남도(全羅南道)의 죽림현황(竹林現況)과 그 개선대책(改善對策) -제일(第一), 각군별대표고죽림(各郡別代表苦竹林)의 몇가지 죽간형질(竹桿形質)과 축적(蓄積)에 대하여)

  • Chung, Dong Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.2 no.1
    • /
    • pp.19-28
    • /
    • 1962
  • Total area of bamboo groves in Korea which is limited to $37^{\circ}$ north latitude, i.e., to southern part of Chungchung-nam-do Province and Kangwon-do Province, is 3,235ha., but this country must import about 3,000 metric ton's bamboo culms from Japan every year. It may be true that the country is not so fit for economical cultivation of bamboo groves from the view point of climatic condition, but the author believes that self-sufficiency in bamboo is not impossible if some scientific method for improving bamboo groves is introduced to our primitive groves. Keeping this point in his mind the auther tried to study on the bamboo groves in the country, and as the first step set about to investigate the actual state of twenty good bamboo groves located in Cholla-nam-do Province from March, 1961 to January, 1962. This is a report on some characters of bamboo culms and growing stock with samples collected in the present investigation. 1) Numbers of bamboo culm per 0.1ha. are 1,183 in average, 1,840 in maximum and 87.5 in minimum before harvesting. 2) According to owners' saying, 1960 was such an off-year that they could hardly see any yearling bamboos in groves, but in 1961 very many new bamboos are produced as follows: the proportion of the number of yearling bamboos produced this year to that of mature bamboos (over 2 years old) is 58.7% in average; the highest 110.5% and the lowest 16.8%. 3) the average diameter of culms at eye height is 6.5cm, but the biggest diameter comes to 11.2 cm, and the average diameters of yearling and mature bamboos are 6.5cm and 6.6cm respectively. 4) Internode length records 29.4 cm in average, the shortest 21.3 cm and the longest 38.4 cm. Average internode lengths of new culms and mature culms are 27.6 cm and 29.4 cm respectively. This shows that the internode length of new culms is in the decrease to that of maturer's. 5) Through this investigation, it was found that internode length is in the influence of the exposure and density of bamboo groves, i. e., the more the dencity of bamboo groves is and the more the exposure nears the north-east, the longer the internode length becomes (see Table 7 and 8). 6) In the growing stock of bamboo groves, bundles per 0.1ha. amount to 271 sok (unit of bundle) in total average, 445 sok in maximum and 126 sok in minimum. 7) Among twenty typical bamboo groves, chosen in each County in Cholla-nam-do Province, only one passes perfectly by Veda's standard rule* prescribing the good bamboo grove, but the eight groves shown in Table 9 could be recommended as good ones in Cholla-nam-do Province, because the auther believes that those groves may be improved better, if we pay more attention to the management of them. 8) Considering that they have managed their groves carelessly and primitively, and that unfortunately their groves must have faced almost on clear felling over the entire area at the time of the Korean War, we can surely expect much more increments in bamboo groves, if we introduce some scientific methods in managing their groves.

  • PDF