• Title/Summary/Keyword: triterpenes

Search Result 81, Processing Time 0.029 seconds

Quantification of triterpenes in Centella asiatica cultivated in a smart farm, and their effect on keratinocyte activation (스마트팜 재배 병풀의 triterpenes 정량 및 각질형성세포 활성화 효과)

  • Jin Hong Park;Seong Min Jo;Da Hee Lee;Youngmin Park;Hwan Bong Chang;Tae Jin Kang;Kiman Lee
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.483-491
    • /
    • 2023
  • This study aimed to compare the bioactive compounds in Centella asiatica (C. asiatica) cultivated in a smart farm and a field and their effects on human keratinocyte cells. C. asiatica was collected in Jeju-do, Korea, and cultured in a smart farm and a field. The main bioactive compounds in the two differentially cultured C. asiatica were identified, and their activation in keratinocytes were assessed. Amplification and sequencing of the internal transcribed spacer (ITS) DNA in the nucleus and psbA-H DNA in the chloroplast were performed for species analysis. A comparison of DNA of plants reported in the NCBI GenBank was performed. The ITS DNA and psbA-H DNA sequences of C. asiatica cultivated in a smart farm and a field were consistent with No. MH768338.1 and No. JQ425422.1, respectively. Analysis of the triterpenes was performed using high performance liquid chromatography (HPLC) and as a result, C. asiatica cultured in a smart farm had more triterpenes than those cultured in a field. The effects of C. asiatica grown in a smart farm on cell proliferation and scratch recovery in HaCaT cells were greater than those grown in a field. These results suggest that C. asiatica cultivated in a smart farm can be effectively utilized as a health functional food.

Triterpenes from the Seeds of Phytolacca sp.

  • Kang, Sam-Sik;Woo, Won-Sick
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 1986
  • Direct comparison of the triterpenoids isolated from the seeds of Phytolacca sp. and synthetic compounds confirmed that the natural products were acetylaleuritolic acid and 3-acetylmyricadiol rather than epiacetylaleuritolic acid, acetyloleanolic acid and phytolaccanol.

  • PDF

STDIES ON ANTITUMOR AGENTS FROM HIGHER PLANTS (制癌作用)

  • Itokawa, Hideji
    • Korean Journal of Plant Resources
    • /
    • v.6 no.1
    • /
    • pp.13-23
    • /
    • 1993
  • To data, many types of compounds having antineoplastic activity have been isolated from higher plants, that is, alkalodids, terpenes, lignans, steroids and so on. Some of ther were isolated from Indonesian plants, Curcuma xanthorrhiza and Eurycoma longifolia. Bisaborane type compounds were compounds were isolated as antimeoplastic compounds againest Sarcoma 180A from C. xanthorrhiza, and quassinoids and euryrene type triterpenes from triterpenes from El longifolia. Casearines, a kind of diterpene, had been isolated as cytotxic components from Casearia sylvestris distributed in South America. RA series Cyclic hexapeptides isolated from Rubia akane and R. cordifolia also have strong antineoplastic activity against various types of tumors. Till now, 16 kinds of RA series compounds were isolated and named as RA-I~XVI. Moreover, monoglucoside of RA-V newly isolated from same plant. Many kinds of derivatives including natural RA compounds were tested for QSAR, and one of them, RA-VII was screened up as a most suitable substance as an antitumor agent. RA-VII(=RA 700) has strong cytotoxic activity against KB cells, P388 lymphocytic leukemia and MM2 mammary carcinoma cells. In some solution, three conformers of RA-VII were observed by NMR. It was discussed the relationship between conformation and activity. Total synthesis was already completed, but there is left room for improvement. Phase I clinical trials for RA-VII has been finished, then Phase II trials will be started before long.

  • PDF

Cytotoxic Triterpenes from Crataegus pinnatifida

  • Min, Byung-Sun;Kim, Young-Ho;Lee, Sang-Myung;Jung, Hyun-Ju;Lee, Jun-Sung;Na, Min-Kyun;:lee, Chong-Ock;Lee, Jong-Pil;Bae, Ki-Hwan
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.155-158
    • /
    • 2000
  • Bioassay-guided fractionation of Crataegus pinnatifida (Rosaceae) gave two cytotoxic ursane-type triterpenes which were identified as uvaol (1) and ursolic acid (2) by physicochemical and spectroscopic methods. 3-Oxo-ursolic acid (3) was synthesized from ursolic acid (2) by Jones method. The cytotoxic activities of these compounds were tested against murine L1210 and human cancer cell lines (A549, SK-OV-3, SK-MEL-2, XF498, and HCT15) in vitro. Compounds 1 and 2 showed moderate cytotoxicities against L1210, whereas they showed weak activities against human cancer cell lines. However compound 3 exhibited potent cytotoxic activities both in murine and in human cancer cell lines.

  • PDF

Anti-Complementary Activity of Protostane-Type Triterpenes from Alismatis Rhizoma

  • Lee, Sang-Myung;Kim, Jung-Hee;Zhang, Ying;An, Ren-Bo;Min, Byung-Sun;Joung, Hyouk;Lee, Hyeong-Kyu
    • Archives of Pharmacal Research
    • /
    • v.26 no.6
    • /
    • pp.463-465
    • /
    • 2003
  • Four protostane-type triterpenes, alisol B 23-acetate (1a), alisol C 23-acetate (2a), alisol B(3a), and alisol A 24-acetate (4a), were isolated from the rhizome of Alismatis plantago-aquatica L. var. orientale Samuelson (Alismataceae) and eleven protostane derivatives (compounds 1-11) were obtained by selective modification from alisol B 23-acetate (1a). These compounds were investigated for their anti-complement activity against the classical pathway of the complement system. Alisol B (3a) and alisol A 24-acetate (4a) exhibited anti-complement activity with $IC_{50} values of 150 and 130 \mu$ M. Among the synthetic derivatives, the tetrahydroxylated protostane triterpene (9) showed moderate inhibitory activity with $IC_{50} value of 97.1 \mu$ M. Introduction of an aldehyde group at C-23 (10; $IC_{50} value, 47.7 \mu$ M) showed the most potent inhibitory effect on the complement system in vitro.

Anti-complement Activity of Triterpenoids from the Whole Plant of Patrinia saniculaefolia

  • An, Ren-Bo;Na, Min-Kyun;Min, Byung-Sun;Lee, Hyeong-Kyu;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.4
    • /
    • pp.249-253
    • /
    • 2008
  • Two oleanane-type triterpenes (1, 2) and their glycosides (4-6), and one ursane-type triterpene (3) have been isolated from a methanolic extract of Patrinia saniculaefolia Hemsley (Valerianaceae) through repeated silica gel and reversed-phase C-18 column chromatography. Their chemical structures were determined as oleanolic acid (1), oleanonic acid (2), 23-hydroxyursolic acid (3), 3-O-${\alpha}$-L-arabinopyranosyl-oleanolic acid (4), 3-O-${\beta}$-D-glucopyranosyl-oleanolic acid (5), and oleanolic acid 3-O-[${\alpha}$-D-xylopyranosyl-($1{\rightarrow}3$)-${\beta}$-D-glucuronopyranoside-6-O-butyl-ester] (6) on the basis of their MS, $^1H$-, and $^{13}C$-NMR spectral data. All compounds were isolated from the whole plant of the P. saniculaefolia for the first time. These compounds were examined for their anti-complement activity against the classical pathway of the complement system. Among them, compounds 1 - 3 exhibited anti-complement activity with $IC_{50}$ values of 470.1, 212.2, and 121.0 ${\mu}M$, respectively, whereas compounds 4 - 6 were inactive. These results suggest that the carbonyl or hydroxy group at C-3 in the oleananeand/or ursane-triterpenes are important for the anti-complement activity against the classical pathway.

Cytotoxic and COX-2 Inhibitory Constituents from the Aerial Parts of Aralia cordata

  • Lee, Ik-Soo;Jin, Wen-Yi;Zhang, Xin-Feng;Hung, Tran-Manh;Song, Kyung-Sik;Seong, Yeon-Hee;Bae, Ki-Hwan
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.548-555
    • /
    • 2006
  • Three diterpenes (1, 8, and 9), three triterpenes (3, 4, and 7), one saponin (11), four sterols (2, 5, 6, and 12), and one cerebroside (10) were isolated from the EtOH extract of the aerial parts of Aralia cordata by repeated silica gel column chromatography. Their chemical structures were identified by comparing their physicochemical and spectral data with those published in literatures. All isolated compounds were evaluated for their cytotoxicity against L1210, K562, and LLC tumor cell lines using MTT assay. Of which, $3{\beta},5{\alpha}-dihydroxy-6{\beta}-methoxyergosta-7,22-diene$ (6) showed a potent cytotoxicity against all cell lines with $IC_{50}$ values of 11.7, 11.9, and $15.1\;{\mu}M$, respectively, while compounds 1, 5, and 11 showed a moderate or weak cytotoxicity. These isolates were also examined for their inhibitory activity against COX-1 and COX-2. Although most compounds, except for 2, 10, and 12, showed a strong inhibitory activity against COX-1, they exhibited a moderate or weak inhibitory activity against COX-2.

Notoginseng leaf triterpenes ameliorates mitochondrial oxidative injury via the NAMPT-SIRT1/2/3 signaling pathways in cerebral ischemic model rats

  • Weijie, Xie;Ting, Zhu;Ping, Zhou;Huibo, Xu;Xiangbao, Meng;Tao, Ding;Fengwei, Nan;Guibo, Sun;Xiaobo, Sun
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.199-209
    • /
    • 2023
  • Background: Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia results in neuronal depolarization, insufficient NAD+, excessive levels of ROS, mitochondrial damages, and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy. Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection actions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy (TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo, treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury, alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated its related downstream SIRT1/2/3-MnSOD/PGC-1α pathways. Conclusion: The study finds that the mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1α signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and treating ischemic stroke.

Biological Activity of Lanostane-type Triterpenes from Ganoderma lucidum

  • Min, Byung-Sun
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.140-142
    • /
    • 2002
  • The fruiting body of Ganoderma lucidum (Polyporaceae) is one of the valuable crude drugs, which has been used clinically in Korea, China, and Japan for a long time as a tonic and sedative, and for the treatment of hepatopathy, chronic hepatitis, nephritis, gastric ulcer, hypertension, arthritis, neurasthenia, insomnia, asthma, and poisoning and chronic bronchitis. Nowadays, this mushroom is used for leukopenia and paid much attention as a home remedy. (omitted)

  • PDF