• Title/Summary/Keyword: triplet

Search Result 345, Processing Time 0.027 seconds

Design of Efficient Electroluminescent lanthanide(Ⅲ) Complexes

  • Yu, Bo Ra;Kim, Hwa Jung;Park, No Gil;Kim, Yeong Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1005-1008
    • /
    • 2001
  • The lanthanide complexes have been anticipated to exhibit high efficiency along with a narrow emission spectrum. Photoluminescence for the lanthanide complex is characterized by a high efficiency since both singlet and triplet excitons are involve d in the luminescence process. However, the maximum external electroluminescence quantum efficiencies have exhibited values around 1% due to triplet-triplet annihilation at high current. Here, we proposed a new energy transfer mechanism to overcome triplet-triplet annihilation by the Eu complex doped into phosphorescent materials with triplet levels that were higher than singlet levels of the Eu complex. In order to show the feasibility of the proposed energy transfer mechanism and to obtain the optimal ligands and host material, we have calculated the effect depending on ligands as a factor that controls emission intensity in lanthanide complexes. The calculation shows that triplet state as well as singlet state of anion ligand affects on absorption efficiency indirectly.

Design of an Air-Core HTS quadruple triplet for a heavy ion accelerator

  • Zhang, Zhan;Wei, Shaoqing;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.35-39
    • /
    • 2016
  • In recent years, high-temperature superconductor (HTS) Quadruple Triplets are being developed for heavy ion accelerators, because the HTS magnets are suitable to withstand radiation and high heat loads in the hot cell of accelerators. Generally, an iron yoke, which costs a mass of material, was employed to enhance the magnetic field when a quadrupole magnet was designed. The type of the magnet is called iron-dominated magnet, because the total magnetic field was mainly induced by the iron. However, in the HTS superconductor iron-dominated magnets, the coil-induced field also can have a certain proportion. Therefore, the air-core HTS quadrupole magnets can be considered instead of the iron-core HTS quadrupole magnet to be employed to save the iron material. This study presents the design of an air-core HTS quadruple triplet which consists three by air-core HTS quadruple magnet and compare the design result with that of an iron-core HTS quadruple triplet. First, the characteristics of an air-core HTS quadrupole magnet were analyzed to select the magnet system for the magnetic field uniformity impairment. Then, the field uniformity was improved(< 0.1%) exactly using evolution strategy (ES) method for each iron-core HTS quadrupole magnet and the air-core HTS quadruple triplet was established. Finally, the designed air-core triplet was compared with the iron-core HTS quadruple triplet, and the results of beam trajectories were presented with both the HTS quadruple triplet systems to show that the air-core triplet can be employed instead of the iron-core HTS triplet. The design of the air-core quadruple triplet was suggested for a heavy ion accelerator.

Energy Relaxation Dynamics of Excited Triplet States of Directly Linked Zn(II)Porphyrin Arrays

  • Song, Nam-Woong;Cho, Hyun-Sun;Yoon, Min-Chul;Aratani, Naoki;Osuka, Atsuhiro;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.271-276
    • /
    • 2002
  • The energy relaxation dynamics of the lowest excited singlet and triplet states of the Zn(II)porphyrin monomer and its directly linked arrays were comparatively investigated with increasing the number of porphyrin moieties. While the fluorescence decay rates and quantum yields of the porphyrin arrays increased with the increase of porphyrin units, their triplet-triplet (T-T) absorption spectra and decay times remained almost the same. The difference in the trends of energy relaxation dynamics between the excited singlet and triplet states has been discussed in view of the electronic orbital configurations.

A Theoretical Study of Some Bicyclic Azoalkanes

  • Chung, Gyu-Sung;Lee, Duck-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2051-2054
    • /
    • 2006
  • The molecular structures of the ground and lowest triplet states of 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH), 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) and their fused ring derivatives are investigated with an ab initio method and the density functional theory. Unlike the singlet DBH and DBO, the azo skeletal structures of the triplet counterparts are turned out to be quite sensitive to the change of the electronic structure of the fused ring. The B3LYP C-N=N-C dihedral angles of the triplet DBH and DBO are estimated to be about 28.0 and $40.4{^{\circ}}$, respectively. The B3LYP singlet-triplet energy gaps for DBH and DBO are predicted to be 58.4 and 48.4 kcal/mol, respectively. The triplet state energy can be lowered drastically by the presence of the remote $\Pi-\Pi$ interaction as in the case of 1bb'.

Control the length of beam trajectory with a quadruple triplet for heavy ion accelerator

  • Wei, Shaoqing;Zhang, Zhan;Lee, Sangjin;Kim, Do Gyun;Kim, Jang Youl
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.40-43
    • /
    • 2016
  • Beam trajectory is needed to be controlled in heavy ion accelerator system. Quadruple magnets are widely used in heavy ion accelerator for focusing the transporting particles. A quadruple triplet system which consists of three consecutive quadrupoles, Q1, Q2 and Q3, is used to control beam trajectory at a focused position. Q1 and Q3 have symmetry with respect to Q2. The beam trajectory in magnet system is affected by higher order fields existed in real fields. For quadrupoles, the representation simulation of beam trajectory was carried out to study the beam trajectory and to estimate an effect of higher order field in triplet system. SCALA program was used to simulate the beam trajectory in $Opera^{TM}$. SCALA can analyze a large number of beam trajectories at the same time by adjusting the size of finite element of the emitter. With $Opera^{TM}$ and $Matlab^{TM}$ programs, the position of focused beam spot in quadruple triplet system can be increased or decreased using evolution strategy (ES) method, therefore the length of triplet system can be controlled. Finally, the quadruple triplet system with the appropriate length and expected beam spot range was suggested in this paper.

Light Scattering-enhanced Upconversion Efficiency in Silica Microparticles-embedded Polymeric Thin Film (고분자 박막 내에 담지 된 실리카 마이크로입자의 광산란 효과에 의한 광에너지 상향전환 효율 향상)

  • Choe, Hyun-Seok;Lee, Hak-Lae;Lee, Myung-Soo;Park, Jeong-Min;Kim, Jae-Hyuk
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.88-94
    • /
    • 2019
  • Triplet-triplet annihilation upconversion (TTA-UC) is a photochemical process wherein two or more low-energy photons are converted to a high-energy photon through a special energy transfer mechanism. Herein, we report a strategy to enhance the efficiency of TTA-UC through the light-scattering effect induced by silica microparticles (SM) embedded in polymeric thin films. By incorporating monodisperse uniform silica microparticles with a uniform size of 950 nm synthesized by $St{\ddot{o}}ber$-based seeded growth method into UC polymeric thin films, the UC intensity in the 430-570 nm range was enhanced by as much as 64% when irradiated by 635 nm laser. Analyzing the lifetime of PdTPBP phosphorescence revealed that the presence of SM in the UC layer does not affect triplet-triplet energy transfer (TTET) between sensitizers and acceptors, supporting the enhancement of TTA-UC originated from the light-scattering effect. On the other hand, the incorporation of SM in UC layer is shown to enhance the triplet-triplet annihilation (TTA) efficiency, which results in a 1.5-fold increase of the ${\Phi}_{UC}$, by scattering light source and thus increasing the number of excited photons to be utilized in TTA-UC process.

Analysis on Noise Correlation of Triplet Line Array Sensors in the East Sea (동해에서의 삼중 선 배열 센서들의 잡음 상관관계 분석)

  • Ryu, Youngwoo;Jeong, Euicheol;Chun, Seung-yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.479-486
    • /
    • 2015
  • A triplet line array has a capability for solving left/right ambiguity problem and high directivity of line array. For this, high computational powers and correlation between nearby sensors must be considered. Hardware powers are dramatically increased, so various adaptive beamforming techniques and signal processing techniques can be adopted for large triplet line array. To investigate the optimum signal processing method and improve the target detection capability, we need to analyze the noise correlation among the triplet line array sensors in real environment. In this paper we analyze the experimental data in the East Sea, investigate noise correlation between three hydrophones in triplet sensors, among the triplet sensors and time varying properties. Based on the acquired results, it is possible to verify some information for beamforming and signal processing methods with considering the properties of the triplet line array.

Principle and Research Trends of Triplet-triplet Annihilation Upconversion (삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술의 원리와 최신 연구현황)

  • Lee, Hak Lae;Shin, Sung Ju;Lee, Myung Soo;Choe, Hyun Seok;Kim, Jae Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.731-744
    • /
    • 2017
  • Triplet-triplet annihilation upconversion (TTA-UC) is a special photochemical process that converts low energy photons to higher energy photon via combination of organic chemicals which fulfill specific energetic criteria. TTA-UC has been known as attractive technology that is able to enhance energy conversion efficiency of the photonic devices based on sunlight, which is achieved by conversion of wasted low energy photons in solar spectrum into higher energy photon. In the present paper, we introduced the photochemical mechanism and characteristics of TTA-UC phenomenon, which is yet unfamiliar to the domestic academia, and investigated recent research status, application, and future research directions of TTA-UC technology.

INVESTIGATION OF TRIPLET STATE AND SINGLET OXYGEN DYNAMICS OF BENZOPHENONE IN POLAR AND NONPOLAR SOLUTIONS WITH TIME-RESOLVED TWO-COLOR THERMAL LENSING METHOD

  • Ha, Jeong-Hyon
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.141-145
    • /
    • 1996
  • The heat generated by nonradiative decay dynamics induces thermal lens effect. From such an effect, photodynamic properties of solutions can be investigated with two-color pulsed thermal lens experiments which have the time resolution of down to nanoseconds. In this study, using nanosecond two-color thermal lens method, we investigated the triplet state of benzophenone and the singlet oxygen state dynamics in various oxygen concentration solvents. The measured triplet state lifetimes, singlet oxygen relaxation times and singlet oxygen formation quantum yields are in good agreement with the reference values. From these parameters the existence of the triplet exciplex formation between benzophenone and benzene is proved, and it is also suggested that the relaxations of triplet states of benzophenone undergo coupled dynamics with some of singlet oxygens in oxygen-rich conditions.

  • PDF