• Title/Summary/Keyword: triple-Band

Search Result 135, Processing Time 0.027 seconds

Optimization of I layer bandgap for efficient triple junction solarcell by ASA simulation (삼중접합 태양전지에서 Intrinsic Layer 밴드갭 가변을 통한 태양전지 고효율화 시뮬레이션)

  • Kang, Minho;Jang, Juyeon;Baek, Seungsin;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • 다중접합 태양전지는 흡수대역이 다른 juntion으로 구성되어, 각각의 태양전지 간의 전류정합(current matching)이 효율 향상에 중요하다. 본 실험에서는 Top cell에 i-a-Si:H(Thinckness:100nm), Middle cell에는 i-a-SiGe:H(Thickness:800nm)을 적용하였고, bottom cell에는 i-${\mu}c$-Si:H(Thickness:1800nm), 수광부의 p-layer에 에 SiOx을 이용하여 triple juntion amorphous silicon solar cell(삼중접합태양전지)을 구현하였다. 이를 최적화 시키기 위해 ASA simulation을 이용하여 각 Cell의 intrinsic layer의 밴드갭을 가변하였다. 가변 결과 i-a-Si:H : 1.85 eV, i-a-SiGe:H: 1.6 eV, i-${\mu}c$-Si:H: 1.4 eV에서 태양전지 효율 14.5 %을 기록 하였다. 본 연구를 통해 Triple juntion cell에서의 intrinsic layer의 밴드갭 최적화를 구현해 볼 수 있었다.

  • PDF

Optimized Operation of Dual-Active-Bridge DC-DC Converters in the Soft-Switching Area with Triple-Phase-Shift Control at Light Loads

  • Jiang, Li;Sun, Yao;Su, Mei;Wang, Hui;Dan, Hanbing
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • It is usually difficult for dual-active-bridge (DAB) dc-dc converters to operate efficiently at light loads. This paper presents an in-depth analysis of a DAB with triple-phase-shift (TPS) control under the light load condition to overcome this problem. A kind of operating mode which is suitable for light load operation is analyzed in this paper. First, an analysis of the zero-voltage-switching (ZVS) constraints for the DAB converter has been carried out and a reasonable dead-band setting method has been proposed. Secondly, the basic operating characteristics of the converter are analyzed. Third, under the condition of satisfying the ZVS constraints, both the reactive power and the root mean square (RMS) value of the current are simultaneously minimized and a particle swarm optimization (PSO) algorithm is employed to analyze and solve this optimization problem. Lastly, both simulations and experiments are carried out to verify the effectiveness of the proposed method. The experimental results show that the converter can effectively achieve ZVS and improved efficiency.

Improved wearable, breathable, triple-band electromagnetic bandgap-loaded fractal antenna for wireless body area network applications

  • Mallavarapu Sandhya;Lokam Anjaneyulu
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.571-580
    • /
    • 2024
  • A compact triple-band porous electromagnetic bandgap structure-loaded coplanar-waveguide-fed wearable antenna is introduced for applications of wireless body area networks. The porous structure is aimed to create a stopband or bandgap in the electromagnetic spectrum and increase breathability. The holes in the bottom electromagnetic bandgap surface increase the inductance, which in turn increases the bandwidth. The final design resonates at three bands with impedance bandwidths of 264 MHz, 100 MHz, and 153 MHz and maximum gains of 2.18 dBi, 6.75 dBi, and 9.50 dBi at 2.45 GHz, 3.5 GHz, and 5.5 GHz, respectively. In addition, measurements indicate that the proposed design can be deformed up to certain curvature and withstand human tissue loading. Moreover, the specific absorption rate remains within safe levels for humans. Therefore, the proposed antenna can suitably operate in the industrial, scientific, and medical, Bluetooth, Wi-Fi, and WiMAX bands for potential application to wireless body area networks.

UWB Antenna with Triple Band-Notched Characteristics Using the Spiral Resonator and the CSRR (스파이럴 공진기와 CSRR을 이용한 삼중 대역 저지 특성을 갖는 UWB 안테나)

  • Kim, Jang-Yeol;Lee, Seung-Woo;Kim, Nam;Lee, Sang-Min;Oh, Byoung-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1078-1091
    • /
    • 2011
  • In this paper, a triple band-notched UWB antennas using a spiral resonator and a complementary split ring resonator is proposed as two types. The band-rejection characteristic of the designed antenna is analyzed through the structure and equivalent circuit model of spiral resonator and CSRR. The measured results of first type antenna show that a VSWR less than 2 was satisfied with a resonant frequency in the range of 1.16~12 GHz and it can be obtained the band-stop performance at 3.3~3.85 GHz, 5.15~6.1 GHz, and 8.025~8.5 GHz. The measured results of second type antenna show that a VSWR less than 2 was satisfied with this antenna works from 1.79 to 12 GHz and it can be achieved the band-notched performance at 3.3~3.88 GHz, 5.12~5.94 GHz, and 8.025~8.51 GHz. Through the measured results, the designed antenna was satisfied UWB band except for triple notched bands.

Compact CPW-Fed Antenna with Triple Folded Patch for WLAN Applications (WLAN 시스템에 적용 가능한 삼중 폴디드 패치를 가진 CPW 급전 소형 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.777-782
    • /
    • 2015
  • In this paper, the compact CPW-fed antenna with triple folded patch for dual-band WLAN applications is proposed. As the conventional double inverted-L antenna is changed into the C-shaped patch and double inverted-L antenna, the antenna overcomes the narrow-band characteristics according to the miniaturization of the antenna. The proposed antenna with the size of only $16.5mm{\times}29.5mm{\times}1.0mm$ is designed and fabricated by optimized parameters to be operated at 2.4 GHz band and 5 GHz band. The antenna is fabricated into FR-4 substrate with thickness of 1.0 mm. We confirm that it is operated as antenna for WLAN applications by obtaining the measured return loss level of < -10 dB at dual-band.

Design and fabrication of a Triple Band Internal Antenna for Handset (휴대용 내장형 트리플(DCS, PCS, UPC5) 안테나 설계 및 제작)

  • Park, Seong-Il;Ko, Young-Hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.681-684
    • /
    • 2008
  • In this paper, triple band mobile chip antenna for DCS($1.71{\sim}1.88GHz$) / PCS($1.75{\sim}1.87GHz$) / UPCS($1.85{\sim}1.99GHz$) on PCB Layout is fabricated. As designed and fabricated antenna is loaded PCB layout, that plate a both side at two independence patterns(upper & lower) to reduce the size and a capacitor for DCS, PCS, UPCS band is proposed. The antenna has a small size of about $19mm{\times}4mm{\times}1.6mm$, narrow bandwidth which is the defect of chip antenna is improved. Bandwidth of fabricated antenna to VSWR less than 2 is satisfied and all bandwith is acquired 15.1 % at $1.71GHz{\sim}1.99GHz$.

  • PDF

원형도파관을 이용한 Ku-band BPF 설계

  • Jeon, Hyeong-Jun;Gang, Chang-Su
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1273-1278
    • /
    • 2005
  • In this thesis, a 2 stage 6-pole bandpass filter(BPF) is designed and implemented by using triple-mode cavity for satellite payload system. The BPF has a 100MHz bandwidth at the center frequency of 14.5GHz(Ku-band) and the response of the filter is the Chebyshev function. The cavity filter uses two orthogonal $TE_{113}$ modes and one $TM_{012}$ mode. The coupling between the adjacent cavityes(intercavity coupling) results in a Chebyshev response and is accomplished by only H-filed component of TE modes. The size and location of intercavity slot is determined by the coupling equation from E- and H-field of TE and TM resonant modes in circular cavity. The 2-stage 6-pole triple-mode cavity BPF has the insertion loss of 2.4dB and the reflection loss of 15dB in the passband. The triple-mode BPF proposed in this thesis can be used as channel filters for satellite payload system and can minimize filter assembly in general wireless communication system.

  • PDF

Triple-band Compact Chip Antenna Using Coupled Meander-line Structure for Mobile RFID/PCS/WiBro (결합 미엔더 선로를 이용한 모바일 RFID/PCS/WiBro 삼중 대역 소형 칩 안테나)

  • Lim Hyoung-Jun;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.178-183
    • /
    • 2006
  • The proposed triple-band compact chip antenna using coupled meander line and stacked meander structure for mobile RFID/PCS/WiBro. The proposed antenna is designed to operate at 900, 1,800, and 2,350 MHz, and is realized by parasitic coupled and stacked a meander line. Meander lines are using extend length of effective current path more than monopole and contribute miniaturization. The coupled meander line controls the excitations of the mobile RFID and PCS, stacked meander line controls the excitation of the WiBro. The fabricated antenna size is $10.98{\times}22.3{\times}0.98\;mm$. The resonance frequencies are 905 MHz, 1.77 GHz and 2.32 GHz. The impedance bandwidths are 24 MHz, 140 MHz and 92 MHz. The maximum gains of antenna are 0.34 dBi, 2.58 dBi and 0.4 dBi at resonance frequencies.

Triplexer based on Filter Characteristics of CRLH Transmission Line and Triple-Band Amplifier Applications (CRLH 전송선로의 필터 특성을 이용한 트리플렉서와 삼중대역 증폭기에의 응용)

  • Yun, Jeong-Ho;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.433-439
    • /
    • 2012
  • In this paper, we proposed the triplexer using unit-cell of CRLH transmission line which has a bandpass characteristic to reduce adjacent channel interference. The input impedance of triplexer with each channel filter is operated open-circuit at the resonance frequencies of other channels. Such property is due to the combination a series and parallel resonance circuits of CRLH-TL unit-cell. The measured triplexer results are showed a measured insertion loss of each channel, less than 1.5 dB, matching at each port, less than 15dB and isolation between channel, better than 25 dB. Also, to validate the triplexer, a small signal amplifier with triple-band is designed and tested. the measured amplifier results show good agreements with prediction.

Triple-Band Compact Chip Antenna Using Stacked Meander Line Structure for GPS/PCS/Satellite DMB Services (적층 미엔더 라인 구조를 이용한 GPS/PCS/위성 DMB 삼중 대역 소형 칩 안테나)

  • Kim Ho-Yong;Kim Young-Do;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.211-216
    • /
    • 2005
  • In this paper, GPS/PCS/Satellite DMB compact chip antenna is designed using stacked meander line for mobile communication handset. The fabricated antenna size is $12.52mm\times19.95\times1.05mm$. The coupling is adjusted by via and arrangement among meander lines to improve FR(Frequency Ratio) and return-loss. The fabricated antenna achieve triple-band. The resonance frequencies are 1.696 GHz, 1.888 GHz and 2.680 GHz. The impedance bandwidths are 150 MHz, 120 MHz and 60 MHz. The maximum gains of antenna are 0.08 dBi, 1.70 dBi and -1.27 dBi at resonance frequencies.