• Title/Summary/Keyword: triple hypergeometric functions

Search Result 23, Processing Time 0.017 seconds

SOME DECOMPOSITION FORMULAS ASSOCIATED WITH THE SARAN FUNCTION FE

  • Kim, Yong-Sup;Hasanov, Anvar;Lee, Chang-Hyun
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.581-592
    • /
    • 2010
  • With the help of some techniques based upon certain inverse pairs of symbolic operators initiated by Burchnall-Chaundy, the authors investigate decomposition formulas associated with Saran's function $F_E$ in three variables. Many operator identities involving these pairs of symbolic operators are first constructed for this purpose. By employing their decomposition formulas, we also present a new group of integral representations for the Saran function $F_E$.

A Class of Bilateral Generating Functions for the Jacobi Polynomial

  • SRIVASTAVA, H M.
    • Journal of the Korean Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 1971
  • Put ($$^*$$) $$G[x,y]={\sum}\limits^{p+q=n}_{p,q=0}[-n]_{p+q}c_{p,q}x^py^q$$, where $[{\lambda}]_m$ is the Pocbhammer symbol and the $c_{p,q}$ are arbitrary constants. Making use of the specialized forms of some of his earlier results (see [8] and [9] the author derives here bilateral generating functions of the type ($$^{**}$$) $${\sum}\limits^{\infty}_{n=0}{\frac{[\lambda]_n}{n!}}_2F_1[\array{{\rho}-n,\;{\alpha};\\{\lambda}+{\rho};}x]\;G[y,z]t^n$$ where ${\alpha}$, ${\rho}$ and ${\lambda}$ are arbitrary complex numbers. In particular, it is shown that when G[y, z] is a double hypergeometric polynomial, the right-band member of ($^{**}$) belongs to a class of general triple hypergeometric functions introduced by the author [7]. An interesting special case of ($^{**}$) when ${\rho}=-m,\;m$ being a nonnegative integer, yields a class of bilateral generating functions for the Jacobi polynomials $\{P_n{^{{\alpha},{\beta}}}(x)\}$ in the form ($$^{***}$$) $${\sum\limits^{\infty}_{n=0}}\(\array{m+n\\n}\)P{^{({\alpha}-n,{\beta}-n)}_{m+n}(x)\;G[y,z]{\frac{t^n}{n!}}$$, which provides a unification of several known results. Further extensions of ($^{**}$) and ($^{***}$) with G[y, z] replaced by an analogous multiple sum $H\[y_1,{\cdots},y_m\]$ are also discussed.

  • PDF