• Title/Summary/Keyword: trihalomethanes

Search Result 94, Processing Time 0.025 seconds

Effect of Chlorine Dioxide on the treatment of Drinking Water Supply (이산화염소($CIO_2$)의 상수정수처리 효과에 관하여)

  • Chung, Yong;Lee, Bo-Young
    • 수도
    • /
    • s.44
    • /
    • pp.6-12
    • /
    • 1988
  • This study was performed to measure the elimination effects of chlorine dioxide on phenol compounds, trihalomethanes (THMs) and algae in drinking water supply. The raw and chlorinated water were treated with 0.5ppm of chlorine dioxide. The phenols contained 0.052mg/1, 0.019mg/1 of raw and treatedwater was absolutely destroyed. The THMs was reduced to 50-60% of the concentration and the algae was inhibited to about 50% of the growth.

  • PDF

The Characteristics of THMs Production by Different Disinfection Methods in Swimming Pools Water (수영장 욕조수의 소독방법에 따른 THMs 발생 특성)

  • Lee Jin;Ha Kwang-Tae;Zoh Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.171-178
    • /
    • 2006
  • The objectives of this study were to investigate the formation of trihalomethanes(THMs) and to compare the concentration level of THMs of swimming pools water by different disinfection methods such as chlorine, ozone-chlorine, and salt brine electrolysis generator (SBEG). The concentration of chloroform was the highest in the chlorine system, and the SBEG was the highest in the production of bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform. The average concentration of total trihalomethanes (TTHMs) in three disinfection systems were $64.5{\pm}27.4mg/l(SBEG),\;43.8{\pm}22.3mg/l(chlorine)$, and $30.6{\pm}16.1mg/l(ozone-chlorine)$, respectively. In chlorine and ozone-chlorine disinfection system, chloroform concentration was highest, followed by BDCN, then DBCM. In the SBEG, TTHMs was composed of 42% of chloroform, 28.9% of bromoform, 15.1% of BDCM and 14% of DBCM, respectively. The strongest correlation was obtained in the levels of chloroform and TTHMs in chlorine, and ozone-chlorine disinfection systems from both indoor and outdoor swimming pools ($r=0.989{\sim}0.999$, p<0.01). In the SBEG, the levels of BDCM and TTHMs showed a good correlation (r=0.913, p<0.01). In chlorine and ozone-chlorine disinfection systems at indoor swimming pools, pH, TOC and $KMnO_4$ consumption showed strong correlation with chloroform and TTHMs concentrations (p<0.01). In the SBEG, pH and TOC were also strongly correlated with chloroform (p<0.01). pH and TTHMs were correlated as well (p<0.05).

Improvement of Water Treatment Efficiency by pH Decreasing Agent (H2SO4) for Droughty Seasons (갈수기 정수장운영관리 사례 - 갈수기 pH저감제(황산)투입에 의한 정수처리효율 향상)

  • Ka, Gilhyun;Kim, Yunyung;Lee, Junho;Ahn, Chihwa;Han, Ihnsup;Min, Byungdae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2008
  • Drinking water treatment is enhanced by coagulant dosages and chlorine injection because of pH increase in raw water in droughty seasons such as spring and fall. But water quality deterioration is occurred by increase in residual aluminium and disinfection by-products. Coagulation process can be used to control natural organic matter (NOM) during water treatment. The effect of coagulation process appeared to depend on the pH of water rather than coagulant dosages. In this study, for water treatment in high pH season $H_2SO_4$ was applied for pH adjustment at full scale. Before and after pH adjustment by $H_2SO_4$ injection, water quality of drinking water was evaluate. In the result of investigation of total organic carbon (TOC) removal in high pH season, TOC was removed approximately 30~40%, which showed decrease in water treatment efficiency. Also, it is increased both particle numbers and residual Al concentration in the water. After $H_2SO_4$ injection for adjustment to pH<7.5 in settled water, treated water turbidity decreased in 0.047 NTU from 0.059 NTU, and particle numbers of filtered water decreased in 20/mL from 90/mL. On the other side, TOC removal efficiency increased in approximately 10% after adjustment of pH. In the result of decrease in pH in raw water through more coagulants and prechlorine without $H_2SO_4$ injection, trihalomethanes (THMs) concentration increased in $16{\mu}g/L$ from $8{\mu}g/L$.

A Study on Haloacetic Acids Formation Potentials by Chlorination in Drinking Water (상수의 염소처리시 생성되는 소독부산물 중 Haloacetic acid류의 생성능에 관한 연구 - 일부 상수원수를 대상으로 -)

  • Chung, Yong;Shin, Dong-Chun;Lim, Young-Wook;Kim, Jun-Sung;Park, Yeon-Shin
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.23-29
    • /
    • 1997
  • The main reason of applying chlorination is to sterilize microbes existing in the drinking water treatment. But chlorination could lead to the formation of disinfection by-products (DBPs) by the reaction of free chlorine with humic substance in the water. Especially the DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and haloketones (HKs) exist in the tap water. The US environmental protection agency (US EPA) defines that trihalomethanes, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile among DBPs are probable/possible human carcinogens. US EPA suggests maximum contaminant levels (MCLs) for THMs (80$\mu$g/L) and HAAs (60$\mu$g/L) in drinking water. In Korea, THMs in drinking water has been surveyed but DBPs in general has not been studied in drinking water practically. Therefore only THMs have been regulating as criteria compounds since 1990 but neither HAAs nor HANs. Researches on HAAs are yet to be found. HAA formation potentials(HAAFPs) have not been practiced. HAAs depends on the characteristics of water sources by chlorination. In this study, HAAFPs from three distinct sources were investigated by laboratory chlorination experiments. This study was performed to measure the level of HAAs in drinking water in Seoul area. At April 1996, after collecting the raw waters from the three sites with the different properties, the water samples were chlorinated at various conditions(pH 5.5, pH 7.0 and without pH adjustment) in the state of raw water to have 0. 5mg/L of residual chlorine concentration. And the raw water, treated water, and tap water of water treatment were collected to measure the HAAs concentration. The quantitative analysis of HAAs was conducted by US EPA methods.

  • PDF

Prediction of Trihalomethanes Formation Potential of Dissolved Organic Matter with Various Sources Using Differential Fluorescence 3D-Excitation-Emission Matrix (EEM) (차등 3차원 형광 여기-방출 매트릭스를 이용한 다양한 기원의 용존 유기물질 트리할로메탄 생성능 예측)

  • Bae, Kyung Rok;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.63-71
    • /
    • 2022
  • This study aimed to maximize the potential of fluorescence 3D excitation-emission matrix (EEM) for predicting the trihalomethane formation potential (THMFP) of DOM with various sources. Fluorescence spectroscopy is a useful tool for characterizing dissolved organic matter (DOM). In this study, differential spectroscopy was applied to EEM for the prediction of THMFP, in which the difference between the EEM before and after chlorination was taken into account to obtain the differential EEM (DEEM). For characterization of the original EEM or the DEEM, the maximum intensities of several different fluorescence regions in EEM, fluorescence EEM regional integration (FRI), and humification index (HIX) were calculated and used for the surrogates for THMFP prediction. After chlorination, the fluorescence intensity decreased by 77% to 93%. In leaf-derived and effluent DOM, there was a significant decrease in the protein-like peak, while a more pronounced decrease was observed in the humic-like peak of river DOM. In general, leaf-derived and effluent DOM exhibited a relatively lower THMFP than the river DOM. Our results were consistent with the high correlations between humic-like fluorescence and THMFP previously reported. In this study, HIX (r= 0.815, p<0.001), FRI region V (r=0.727, p<0.001), humic-like peak (r= 0.827, p<0.001) from DEEM presented very high correlations with THMF P. When the humic-like peak intensity was converted to a logarithmic scale, a higher correlation was obtained (r= 0.928, p<0.001). This finding suggests that the humic-like peak in DEEM can serve as a universal predictor for THM formation of DOM with various origins.

Factors Affecting the Formation of Iodo-Trihalomethanes during Chlorination in Drinking Water Treatment (정수처리에서 염소 처리시 요오드계 트리할로메탄류 생성에 영향을 미치는 인자들)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Kyung-A;Song, Mi-Jeong;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.542-548
    • /
    • 2014
  • Effects of bromide ($Br^-$) and iodide ($I^-$) concentrations, chlorine ($Cl_2$) doses, pH, temperature, ammonia nitrogen concentrations, reaction times and water characteristics on formation of iodinated trihalomethanes (I-THMs) during oxidation of iodide containing water with chlorine were investigated in this study. Results showed that the yields of I-THMs increased with the high bromide and iodide level during chlorination. The elevated pH significantly increased the yields of I-THMs during chlorination. The formation of I-THMs was higher at $20^{\circ}C$ than $4^{\circ}C$, $10^{\circ}C$ and $30^{\circ}C$. In chloramination study, addition of ammonium chloride ($NH_4Cl$) markedly increased the formation of I-THMs. Among the water samples collected from seven water sources including wastewater treatment plant (WWTP) effluent water (EfOM water), prepared humic containing water (HA water) and algal organic matter (AOM) containing water (AOM water), EfOM water generated the highest yields of I-THMs ($12.31{\mu}g/mg$ DOC), followed by HA water ($4.96{\mu}g/mg$ DOC), while AOM water produced the lowest yields of I-THMs ($0.99{\mu}g/mg$ DOC). $SUVA_{254}$ values of EfOM water, HA water and AOM water were $1.38L/mg{\cdot}m$, $4.96L/mg{\cdot}m$ and $0.97L/mg{\cdot}m$, respectively. The I-THMs yields had a low correlation with $SUVA_{254}$ values ($r^2$ = 0.002).

A Study on Formation and Concentration of Trihalomethanes in Water Treatment Process (정수처리공정의 THMs 생성과 농도변화에 관한 연구)

  • 조덕희;안승구
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 1997
  • This study was carried out to investigate the effects of prechlorination and algae growth on THMs generation. The sample water obtained from Paldang Dam which is a main source of raw water for the Seoul metropolitan area. THMs concentration in the sample water was investigated in water treatment process prechlorifiation, chemical coagulation, and sand filtration. And also, THMs concentration were analyzed in the water which cultured algae in laboratory. The results were as follows 1. The THMs concentration produced by prechlorination unit process were increased in control (not purified) but decreased in process of purification. 2. The THMs concertration can reduce by increasing the number of cleaning filters. 3. The main precursor in raw water for the THMs generation was supplied by algae growth. So as to reduce the THMs concentration in water supplying system, it is the best method to manage algae growth in water body of Paldang reservoir.

  • PDF

Application of membrane distillation process for tap water purification

  • Gryta, Marek
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Membrane distillation process was used for purification of pre-treated natural water (tap water). The rejection of inorganic and organic compounds in this process was investigated. The obtained rejection of inorganic solutes was closed to 100%, but the volatile organic compounds (VOCs) diffused through the membrane together with water vapour. The content of trihalomethanes (THMs) in the obtained distillate was two-three fold higher than that in the feed, therefore, the rejection of the total organic compounds present in the tap water was reduced to a level of 98%. The intensive membranes scaling was observed during the water separation. The morphology and composition of the fouling layer was studied using scanning electron microscopy coupled with energy dispersion spectrometry. The influence of thermal water pre-treatment performed in a heat exchanger followed by filtration on the MD process effectiveness was evaluated. This procedure caused that significantly smaller amounts of $CaCO_3$ crystallites were deposited on the membrane surface, and a high permeate flux was maintained over a period of 160 h.

Ion Exchange Processes: A Potential Approach for the Removal of Natural Organic Matter from Water

  • Khan, Mohd Danish;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-80
    • /
    • 2018
  • Natural organic matter (NOM) is among the most common pollutant in underground and surface waters. It comprises of humic substances which contains anionic macromolecules such as aliphatic and aromatic compounds of a wide range of molecular weights along with carboxylic, phenolic functional groups. Although the concentration of NOM in potable water usually lies in the range of 1-10 ppm. Conventional treatment technologies are facing challenge in removing NOM effectively. The main issues are concentrated to low efficiency, membrane fouling, and harmful by-product formation. Ion-exchangers can be considered as an efficient and economic pretreatment technology for the removal of NOM. It not only consumes less time for pretreatment but also resist formation of trihalomethanes (THMs), an unwanted harmful by-product. This article provides a comprehensive review of ion exchange processes for the removal of NOM.

Study on Analysis of Volatile Organic Compounds (VOCs) in Water (수중 휘발성 유기물질의 분석에 관한 연구)

  • 전옥경;서병태;이정자;이덕행
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.16-22
    • /
    • 1993
  • In recent years, great concern for the improvement of drinking water quality has been arising due to the contamination of the raw and treated water. So trihalomethanes (THMs) and some other volatile organic compounds (VOCs), potential carcinogenic substances, rendered the government to take some countermeasurements for clean water service in the dimension of public health. In this study, we used liquid-liquid extraction method as a rapid simple method for determination of VOCs through eluation with n-Pentane in water. The aim with the present study has been to determine the changes of recovery and reproducibility of the method under the various conditions in extraction solvents, solvent ratio and extraction time, and to observe the concentrations under the various temperature and pH during storage.

  • PDF