• Title/Summary/Keyword: trihalomethane

Search Result 75, Processing Time 0.021 seconds

Effect of Pore Structure Change on the Adsorption of NOM and THMs in Water Due to the Increase of Reactivation Number of Coal-based Activated Carbon (석탄계 활성탄의 재생 횟수 증가에 따른 세공 구조 변화가 수중의 NOM과 THM 흡착에 미치는 영향)

  • Son, Hee-Jong;Ryu, Dong-Choon;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.965-972
    • /
    • 2010
  • The objective of this research was to evaluate for the changes of pore structures and adsorption capacities due to the increase the numbers of reactivation. The reactivated GAC had experienced three cycles of water treatment and thermal reactivation. The pore size distributions of virgin and reactivated GACs were very different. The virgin GAC was mostly microporous (< $15\;{\AA}$), with less mesopores ($20{\sim}100\;{\AA}$). The reactivated GACs was mostly mesoporous ($20{\sim}100\;{\AA}$), with less micropores (< $15\;{\AA}$). The specific surface area and total pore volume were reduced as the number of reactivation increased. The maximum adsorption capacity (X/M) of virgin GAC ($964.6\;{\mu}g/g$) for $CHCl_3$ was 2~3 times larger than 1st~3rd reactivated GAC ($255.6{\sim}399.5\;{\mu}g/g$). The maximum adsorption capacity (X/M) of virgin GAC (19.5 mg/g) for DOC (dissolved organic carbon) was equal to that of 1st~3rd reactivated GAC (18.0~18.7 mg/g).

Characteristics of Chlorination Byproduct Formation of Synthetic Nitrogenous Compounds (합성유기질소 성분에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Hwang, Young-Do;Roh, Jae-Soon;Bean, Jae-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.523-530
    • /
    • 2010
  • This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from 14 synthetic nitrogen compounds with or without $Br^-$. 5 of 14 compounds were 3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid and 4-nitroaniline that were relatively shown high for formation of THMs/DOC whether or not $Br^-$ presented. 6 compounds that were p-nitrophenol, 3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid and 4-nitroaniline were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Trichloroacetic acid (TCAA) was dominated in 6 compounds. The formation of haloacetonitriles (HANs)/DOC whether or not $Br^-$ presented was high in 3-aminobenzoic acid, 2-aminophenol, aniline and anthranilic acid. Specially, aniline was detected 14.6∼16.1 ${\mu}g/mg$. The formation of chloral hydrate (CH)/DOC and chloropicrin (CP)/DOC were shown high in 3-aminobenzoic acid and 2-aminophenol in 14 compounds. 6 compounds (3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid, 4-nitroaniline, p-nitrophenol) and a commercial humic acid were tested for the formation of DBPs/DOC whether or not $Br^-$ presented. When $Br^-$ was added, the DBPs/DOC was higher for the order of aniline> anthranilic acid> 3-aminobenzoic acid> 4-nitroaniline> humic acid> p-nitrophenol> 2-aminophenol. And when $Br^-$ was not added, the DBPs/DOC was higher for the order of anthranilic acid> aniline> p-nitrophenol> humic acid> 4-nitroaniline> 3-aminobenzoic acid> 2-aminophenol.

A Study on Characterization of Formation and Reduction of THMs in Water Treatment Process (정수처리공정별 THMs 발생특성과 저감방안에 대한 연구)

  • Ka, Gil-Hyun;Bae, Min-Ho;Lee, Jun-Ho;Ahn, Chi-Hwa;Han, Ihn-Sup;Min, Byung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.721-728
    • /
    • 2008
  • DBPs(Disinfection By-Products) are most formed through the reactions between chlorine and NOM(Natural Organic Matter) in water treatment. In this study, occurrence of DBPs including THMs(Trihalomethanes) is evaluated. Also, influencing factors by the seasons and raw water quality were investigated for correlation among them and the characteristics of THMs formation by prechlorination process. This study investigated the operation condition for THMs removal depending on raw water quality. Water treatment plant from intake station to gauging well flows for about 10 hours in Y Water Supply Office. It is limited to control of THMs formation because of excessive reaction time between chlorine and THMs precursors in the intake station. Therefore, as multi-points prechlorination from intake station to gauging well, THMs formation was decreased in the water treatment, and it was willing to prevent overdosage of chlorine. The concentration of THMs was 0.021 mg/L in the summer, 0.015 mg/L in the winter, respectively. Also, THMs formation showed that 0.013 mg/L in the water of gauging well after prechlorination, 0.014 mg/L in the flocculation/sedimentation/filtration, 0.016 mg/L in the water after postchlorination, respectively. THMFP(Trihalomethane Formation Potential) removed 42.7% and 50% through the flocculation/sedimentation and filtration, respectively, and it is similar TOC removal efficiency. In this study, multi-points prechlorination from intake station to gauging well decreases in contact time and concencrations of NOM and chlorine. Also, it decreases in THMs and amount of chlorine uesd. In the result of multi-points prechlorination in the summer, the concentration of THMs was 0.013mg/L in the treated water. In view of these facts, THMs formation can be decreased approximately 50%.

Removal Characteristics of Chlorination Disinfection By-Products by Activated Carbons (활성탄 공정에서의 염소 소독부산물 제거특성)

  • Son, Hee-Jong;Roh, Jae-Soon;Kim, Sang-Goo;Bae, Seog-Moon;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.762-770
    • /
    • 2005
  • Adsorption and biodegradation performance of chlorinated by-products such as trihalomethanes(THMs) and haloacetic acids(HAA5) on granular activated carbon were evaluated in this study. The coconut-based activated carbon was found more effective than others in adsorption of THMs due to larger pore volume of less than $20{\AA}$. The wood-based activated carbon was less effective than coconut- and coal-based activated carbon in adsorption nevertheless having larger pore volume and specific surface area than others. The maximum adsorption capacity(X/M) of coconut-based carbon for THMS was 1.1-1.5 times larger than coal based carbon and 14.1-31.4 times larger than wood based activated carbons. Activated carbon usage rate(CUR) of coconut-, coal- and wood-based activated carbons for chloroform were 9.4, 11.2 and 38 g/day respectively. In the evaluation of adsorption isotherm of THM species for coconut-, coal- and wood-based activated carbons, k value of chloroform was the lowest in the THM species, It menas that chloroform is difficult to remove by activated carbon adsorption. and BDCM, CDBM, bromoform are in the succeeding order of adsorption. In the evaluation of biodegradation rate, mean biodegradation rate was chloroform 7%, BDCM 5%, CDBM 4% and bromoform 3%, respectively THMs are difficult materials to be biodegraded. In the evaluation of characteristics of adsorption and biodegradation for HAA5 species, HAA5 species appear to be removed effectively by activated carbon. Most of the HAA5 are adsorbed at the beginning of operation periods and HAA5 except TCAA were almost biodegraded from bed volume of 2,000 and more than 90 percent of biodegradation of TCAA was started from bed volume around 4,000 and after that biodegradation rate was increased with increasing bed volume.

Application of Enhanced Coagulation for Nakdong River Water Using Aluminium and Ferric Salt Coagulants (낙동강 원수를 대상으로 Al염계 및 Fe염계 응집제를 이용한 고도응집의 적용)

  • Moon, Sin-Deok;Son, Hee-Jong;Yeom, Hoon-Sik;Choi, Jin-Taek;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.590-596
    • /
    • 2012
  • Enhanced coagulation is best available technologies to treat NOM in water to produce clean drinking water. In this research, the comparison experiments between conventional coagulation (CC) and enhanced coagulation (EC) using 4 type coagulants i.e., ferric chloride, aluminium sulphate (alum), poly aluminium sulphate organic magnesium (PSOM) and poly aluminium chloride (PACl) were performed in terms of surrogate parameters such as dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), haloacetic acid formation potential (HAAFP) and zeta potential variation in order to find out the most effective coagulant and conditions to fit Nakdong River water. When applied to EC process, the turbidity removal efficiency did not increased gradually compared to the CC process when adding coagulants. Furthermore, the removal efficiency of turbidity became decreased much more as coagulants were added increasingly whereas the removal efficiency of DOC, THMFP and HAAFP became increased by 13~18%, 9~18% and 9~18% respectively compared to the CC process. The characteristics of turbidity removal showed relatively high removal efficiency considering the pH variation in entire pH range when using $FeCl_3$ and PACl. Additionally, in case of alum and PSOM steady removal efficiency was shown between pH 5 and pH 8. In terms of DOC surrogate the coagulants including 4 type coagulants indicated high removal efficiency between pH 5 and pH 7. The removal efficiency of dissolved organic matter (DOM) in EC between less than 1 kDa and more than 10 kDa augmented by 11~21% and 16% respectively compared to the CC process. The removal efficiency of hydrophobic and hydrophilic organic matter proved to be increased by 27~38% and 11~15% respectively. In conclusion, the most effective coagulant relating to EC for Nakdong River water was proved to be $FeCl_3$ followed by PSOM, PAC and alum in order.