• 제목/요약/키워드: trigger vacuum switch

검색결과 13건 처리시간 0.025초

The research of dependency between trigger condition and trigger geometry for triggered vacuum switch

  • 박웅화;김무상;손윤규;이병준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.228.2-228.2
    • /
    • 2016
  • The triggered vacuum switch (TVS) discharges high current through two processes. In the first process, an igniting plasma is generated at a trigger system, and the next process that a main discharge is taken place sequentially at a six-gap rod electrode within a few microsecond. In general, a triggered voltage producing the igniting plasma is increased. However, after several hundred shots, it goes down and stable, in our experiment the trigger voltage is about 5 kV after 250 shots. This triggered characteristics comes from the ceramic insulator which is covered by an electrode material, therefore we have focused on the first igniting plasma process. The igniting plasma has been generated at the surface of a ceramic insulator under a strong electric field. The electric field can be increased through modifying geometries of trigger components which compose of a trigger pin, a ceramic insulator and an enclosed holder. We fabricated not only two types of trigger pin which are a plane head and an umbrella head type, but two different holders which are a concave and a convex type. In this paper the result that the dependency of geometries for these four combined types is included, but the study of the ceramic insulator is not. The research of the ceramic insulator will be announced in the other paper.

  • PDF

Vacuum Rotary Arc Gap Switch의 설계 및 시험 (Design and Test of Vacuum Rotary Arc Gap Switch)

  • 서길수;황동원;이태호;황리호;김희진;이홍식;임근희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권1호
    • /
    • pp.19-24
    • /
    • 2003
  • Design and test results of a VRAG(Vacuum Rotary Arc Gap) switch were presented. To control the damage of electrodes caused by the vacuum arc, Lorentz's force by the radial magnetic field between spiral electrodes was used to rotate the vacuum uc. VRAG switch electrodes were made of the material of CuCr and OFHC. Gap distance between two spiral type electrodes for the rotation of the arc discharge is 8, 10, 12mm. In the cathode, one trigger electrode was inserted into each spiral wing. Normal operation of the VRAG switch was confirmed with 10.6[$mutextrm{s}$]of trigger delay and 2~3[$mutextrm{s}$] of the jitter time. The speed of the vacuum arc was measured to be 0.6 ~ 1[km/s] by a motion analyzer.

진공스위치 트리거 발생기 설계에 관한연구 (A study on the design of triggering pulse generator for the triggered vacuum switch)

  • 김무상;손윤규;박웅화;이병준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.201.2-201.2
    • /
    • 2016
  • The triggered vacuum switch (TVS) is widely used as a high power switch in the field of pulsed power application. TVS can produce current of higher than 100 kA within a microsecond after being triggered. A triggering high voltage pulse generator supplies a high voltage signal to the trigger system to initiate the discharge between a trigger pin and one of main electrode. The trigger system, which consists of a tungsten trigger electrode and cylindrical ceramic insulator around it, is normally installed at the center of main cathode electrode. The discharging characteristics of the trigger system strongly depend on the geometry, electrode material, vacuum pressure and so on. In addition, we especially will focus on the developing a triggering pulse generator, which can vary not only value of voltage but also pulse duration, because its properties gives pivot influences on the TVS discharge. To verify such effects, we made a 3.3 kJ TVS set-up initially. Thus we will discuss some of prominent results from 3.3 kJ TVS system. In parallel we will show on the design of 300 kJ TVS system for the high current in the future.

  • PDF

The research for the triggered vacuum switch which made of a copper electrode

  • 박웅화;김무상;이병준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.144.1-144.1
    • /
    • 2015
  • The triggered vacuum switch(TVS) is a one of the important component in consisiting high power control systems(HPCS). The operating condition is depended on material, geometry, operating power and so on. Our research is focused on the effects of thses basic properties and ptimized condition, because these are critical conditons in understanding the TVS operation. Our experiment is accomplished with a copper electrode and a tungsten trigger pin after being assembled into a vacuum chamber. The operating voltage in our system is more than dozens of kV at the 5kV trigger pulse. Our goal is up to 300kJ, therefore the currents should be more optimized in additional experiments,

  • PDF

진공 스위치를 이용한 Crowbar 시스템의 개발 (Development of the Crowbar System Using a Vacuum Switch)

  • 이태호;허창수;이홍식
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권12호
    • /
    • pp.584-590
    • /
    • 2002
  • Crowbar system is usually applied to a pulsed power system in which a capacitor bank is discharged into a load. This provides a free wheeling path for the load current and prevents the capacitor from recharging due to a reverse voltage. Usually diodes have been used as a crowbar switch, but it is not a practical system because the cost of the diodes goes up enormously with increasing the system voltage and current. This paper presents a novel protection scheme of a charging and discharging system of a 300 kJ capacitor bank using a low-cost crowbar system which consists of a crowbar switch and resistors. Triggered vacuum switch(TVS) was used for a crowbar switch, and Rogowski coil was used to determine a trigger time of TVS. When this crowbar system is applied to our pulsed power system which consists of capacitor bank($123muF$), inductor() for forming a pulse, load resistor$(100 m\Omega)$, and a closing switch, instantaneous reversal voltage of capacitor bank could be limited less than 1.8 ㎸ until capacitor bank was charred to 17 ㎸.

고전압 대전류용, Seal-off TVS(Triggered Vacuum Switch) 연구 (Study of Seal-off Triggered Vacuum Switch(TVS) for High Voltage and High Current)

  • 박성수;한영진;김상희;권영건;김승환;박용정;홍만수;남상훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1823-1826
    • /
    • 2002
  • The purpose of this experiment was to develope Triggered Vacuum Switch (TVS) for the high voltage and high current. The TVS has an array of rods of alternate polarity in which a fixed gap spacing is maintained between the rods. The cross section of each rod has trapezoidal shape. It consists of electrode, ceramic chamber, getter and trigger. Currently, triggered vacuum switch (TVS) with seal-off has been designed and fabricated at PAL. An experimentation and trigger devices for TVS were designed for testing characteristics of electricity. For making the prototype of TVS, it is developed of fabrication process and fined of electrode material. The fabrication of the TVS is a lot of process which have manufacturing of part, chemical clean, ceramic brazing and metal welding. The fabricated TVS is tested of leak for vacuum, hold-off voltage and conditioning of trigger system. The TVS has pinch-off after it is removed of gas in the TVS and activated of getter in degassing furnace. The prototype TVS tested about 20 kV, 75 kA, 83 ${\mu}s$ with 100 kJ capacitor bank and inductance 5 ${\mu}H$. This paper describes the results of tests and the characteristics of the switch.

  • PDF

Pulsed Power전원장치용 Gas Puffing INPIStron의 개발 (Development of Gas Puffing INPIStron for Pulsed Power Supply)

  • 서길수;김영배;조국희;이형호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권12호
    • /
    • pp.679-684
    • /
    • 2000
  • Closing switch, key component of pulsed power system, is constructed simply and used frequently due to the easy control and manufacture of one. The kind of one are spark-gap, triggered vacuum switch, pseudo-spark switch and INPIStron. But the electrode of spark gap switch is damaged with the hot spot by Z-pinch and then the life of one become short. INPIStron with inverse pinch effect has long life but it is difficult trigger system to provide uniform discharge between cathode and anode. In this paper, the design and manufacturing of INPIStron with gas puffing trigger method in order to supply uniform discharge inter-electrode and the performance of the developed INPIStron applied to 500[kA]-2[MJ] pulsed power system is presented.

  • PDF

대전류 펄스 성형이 가능한 150MW급 펄스파워 시스템의 설계 및 동작특성 (Design and Operational Characteristics of 150MW Pulse Power System for High Current Pulse Forming Network)

  • 황선묵;권해옥;김종서;김광식
    • 전기전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.217-223
    • /
    • 2012
  • 본 논문은 트리거 시간을 조절하여 펄스 성형이 가능한 150 MW 펄스 파워 시스템의 설계와 동작특성을 알아보았다. 이 시스템은 2개의 커패시터 뱅크 모듈로 구성되어 있고, 각 커패시터 뱅크 모듈은 병렬로 연결되어 있다. 그리고 커패시터 뱅크 모듈은 메인스위치, 커패시터, 에너지 덤프회로, 크로바 회로, 펄스 성형 인덕터로 구성되어 있다. 또한 이 시스템의 모듈 선택과 트리거 시간은 트리거 제어부에서 조정된다. Pspice 시뮬레이션은 실험회로의 결과를 예측하고, 시스템의 구성품의 파라미터를 결정하기 위한 것으로 사용하였다. 실험 결과, 시뮬레이션은 실험결과와 잘 일치하였다. 출력 전류의 펄스폭은 커패시터 뱅크 모듈에서의 순간적 점화 시간 제어로 300~650 us의 펄스폭이 형성되었다. 그리고 최대 전류값은 2개의 커패시터 뱅크 모듈이 동시에 트리거 되었을 때 약 40 kA 정도이다. 이 150 MW 펄스 파워 시스템은 파암 전원, Rail Gun, Coil Gun, 나노분말 제조, HPM 등과 같은 대전류 펄스 파워 시스템에 적용할 수 있다.

트리거 진공 스위치 개발 (Development of Triggered Vacuum Switch (TVS))

  • 박성수;한영진;이병준;김상희;남상훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2126-2128
    • /
    • 2000
  • A TVS(triggered vacuum switch) use in high-power, high-current, and high-frequency conversion and switching circuits. The TVS has a six-gap trapezoidal rod electrode system. The electrode system consists of three cathode and anode rods which are made with OFHC. The trigger unit of the TVS is located at the cathode base center. To obtain a wide variety of characteristics this paper describes the results of tests.

  • PDF

전열화학추진용 2.4MJ 펄스파워전원의 설계와 동작특성(II) (Design and Operation Characteristics of 2.4MJ Pulse Power System for Electrothermal-Chemical (ETC) Propulsion (II))

  • 진윤식;이홍식;김종수;황동원;김진성;추증호;정재원;문희종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1603-1605
    • /
    • 2001
  • Eight 300kJ modularized capacitor-banks have been constructed. These modules have been installed and assembled to make a 2.4MJ pulse power system (PPS). This 2.4MJ PPS was developed to be used as a driver of an electrothermal-chemical (ETC) gun. Each capacitor bank has six 22kV, 50kJ capacitors connected in parallel. A triggered vacuum switch (TVS-43) was adopted as a main pulse power-closing switch in each module. The module also contains a crowbar circuit made of three high-voltage diode-stacks, a multi-tap inductor and an energy-dumping resistor. Various current shapes have been formed by a sequential firing of multiple capacitor banks. Resistive dummy load has been used and various combinations of experimental parameters, such as charging voltage, trigger time and inductance, were tested to make flexible current shapes.

  • PDF