• Title/Summary/Keyword: triethyl orthosilicate

Search Result 2, Processing Time 0.02 seconds

Thermal CVD of Silica Thin Film by Organic Silane Compound (유기 실란화합물을 이용한 SiO2 박막의 열CVD)

  • Kim, Byung-Hoon;Ahn, Ho-Geun;Imaishi, Nobuyuki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.985-989
    • /
    • 1999
  • Silica($SiO_2$) thin film was synthesized by a low pressure metal organic chemical vapor deposition(LPMOCVD) using organic silane compound. Triethyl orthosilicate was used as a source material. Operation pressure was 1~100 torr at outlet of the reactor and deposition temperature was $600{\sim}900^{\circ}C$. The experimental results showed that the high reaction temperature and high source gas concentration led to higher growth rate of $SiO_2$. The step coverage of films on micro-scale trenches was fairly good, which resulted from the phenomena that the condensed oligomers flow into the trenches. We estimated a reaction path that the source gas polymerizes and produces oligomers (dimer, trimer, tetramer, etc.), which diffuse and condense on the solid surface. The chemical species in the gas phase at the outlet of reactor tube were analyzed by quadrapole mass spectrometer. The peaks, assigned to be monomer, dimer of source gas and geavier molecules, were observed at 650 or $700^{\circ}C$. At higher temperature($900^{\circ}C$), the peaks of the heavy molecules disappeared, because almost all the source gas and intermediate(polymerized oligomer) molecules were oxidized or condensed on colder tube wall.

  • PDF

Preparation of Silica Core-Hybrid Pigment via Sol-Gel Process and It's Application for Inkjet Dispersion Ink (졸-겔법을 이용한 실리카 핵을 가지는 하이브리드 안료의 제조와 잉크젯 분산 잉크로서 응용)

  • Jeon, Young-Min;Kim, Jong-Gyu;Gong, Myoung-Seon
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.599-605
    • /
    • 2006
  • N-(3-triethoxysilylpropyl)-1,4-diaminoanthrquinone-2,3-dicarboximide (TESP-DADI), an organic blue pigment, has been prepared and incorporated into silica solid matrix reacting triethyl orthosilicate (TEOS) via sol-gel method. Morphology and microstructure of resulting hybrid pigment were studied employing SEM and TEM. The micrographs and particle size distributions showed that uniform pigment can be obtained employing TEOS-based sol-gel method forming silica core. Particle size distribution of dispersed pigment in water was examined using the technique of dynamic light scattering. The ensuing pigment dispersion ink was subjected to various physicochemical evaluation such as viscosity, surface tension, inkjet stability, storage stability, and color change as inkjet ink using spectrophotometric, and microscopic techniques.