• Title/Summary/Keyword: tribosystem

Search Result 13, Processing Time 0.022 seconds

Evaluation of Microscopic Wear Characteristics for CVD TiN Coatings with SEM Tribosystem (SEM Tribosystem에 의한 CVD TiN막의 미시적 마모 특성 평가)

  • 문봉호
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.137-145
    • /
    • 2004
  • This study surveys the microscopic wear of CVD TiN coatings in repeated sliding, using the SEM Tribosystem as in-situ system. According to the research, the depth of wear groove and the specific wear amount are changed by the transition of the microscopic wear mode. This investigation leads to the fact that the change of wear characteristics produces the transition of the wear mode. In this survey, four modes are observed for CVD TiN coatings with the thickness of 1.6$\mu\textrm{m}$: ploughing, powder formation, flake formation and coating delimitation. The microscopic wear properties is quantitatively evaluated in terms with the microscopic wear mode and the specific wear amount. These relationships prove that the observation of wear modes with a SEM Tribosystem is useful to evaluate wear properties.

Transition Condition of Microscopic Wear Mode for TiN Coating by SEM Tribosystem (SEM Tribosystem에 의한 TiN피막의 미시적 마모형태의 천이 조건)

  • Moon, Bong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.100-107
    • /
    • 2011
  • To evaluate the wear characteristics of very thin ceramic coated layer, it is very important to investigate its wear process in great detail. An effective method for investigating the wear of a thin layer is the observation of wear process in microscopic detail, using in-situ system. In this study, based on the SEM Tribosystem as in-situ system, the microscopic wear mode of TiN coatings was investigated in repeated sliding. Consequently, four modes were revealed for TiN coatings: Ploughing, powder formation, flake formation and coating delimitation. Sc(Severity of contact) can clarify transition condition of those microscopic wear modes.

A Study on the Allowable Stress of TiN Coating During Repeated Sliding Condition by In-situ System (미끄럼반복마찰의 직접관찰에 의한 TiN피막의 허용응력에 관한 연구)

  • Moon, Bong-Ho
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.147-155
    • /
    • 2011
  • The ceramic coatings are excellent materials of cutting tools and sliding parts. To evaluate the wear characteristics of very thin ceramic coated layer, it is very important to investigate its wear process microscopically. An effective method for investigating the wear of a thin layer is the observation of wear process in microscopic detail using in-situ system. In this study, using the SEM Tribosystem as in-situ system, the microscopic wear mode of TiN coatings was investigated in repeated sliding. As results, four modes were observed for TiN coatings: Ploughing, powder formation, flake formation and coating delimitation. The observation of the microscopic wear by in-situ system can clarify the allowable stress of TiN coating.

Development of methodology for evaluating tribological properities of Ion-implanted steel (이온 주입한 강의 미시적 마모 튼성의 평가)

  • MOON, Bong-Ho;CHOI, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.146-154
    • /
    • 1997
  • Ion implantation has been used successfully as a surface treatment technology to improve the wear. fatigue and corrosion resistances of materials. A modified surface layer by ion implantation is very thin(under 1 m), but it has different mechanical properties from the substrate. It has also different wear characteristics. Since wear is a dynamic phenomenon on interacting surfaces with relative motion, an effective method for investigtating the wear of a thin layer is the observation of wear process in microscopic detail using in-situ system. The change of wear properties produces the transition of wear mode. To know the microscopic wear mechanism of this thin layer, it is very important to clarify its microscopic wear mode. In this paper, using the SEM and AFM Rribosystems as in-situ system, the microscopic wear of Ti ion-implanted 1C-3Cr steel, a material for roller in the cold working process, was investigated in repeated sliding. The depth of wear groove and the speciffc wear amount were changed with transition of microscopic wear mode. The depth of wear groove with friction cycles in AFM tribosystem and specific wear amount of Ti ion-implanted 1C-3Cr steel were less about 2-3 times than those of non-implanted 1C-3Cr steel. The microscopic wear mechansim of Ti ion-implanted 1C-3Cr steel was also clarified. The microscopic wear property was quantitatively evaluated in terms of microscopic wear mode and specific wear amount.

  • PDF

Effect of the Droplets on the Wear Characteristics of Steel for the Cold Working Roller (Droplet가 냉연 롤러용 강의 마모 특성에 미치는 영향)

  • 문봉호
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.145-151
    • /
    • 2004
  • A modified surface layer by ion implantation is very thin (under 1 $\mu\textrm{m}$) but has superior mechanical characteristics. therefore ion implantation has been used successfully as a surface treatment technology to improve the wear, fatigue, and corrosion resistances of materials. MEVVA which is a kind of ion beam apparatus has merits of low cost and is usable to various metals, but occurs a droplet ranging from micron to tens of micron on the implanted surface at ion implantations. wear is a dynamic phenomenon on interacting surfaces with rotative motion. Since wear changes in condition of the surface, we should control to surface. In order to improve a wear resistance of Ti ion implanted 1C-3Cr steel(material for roller in the cold working process), it is essential to investigate the effect of the droplets on the wear characteristics. In this study, we investigate the effect of the droplets on the wear characteristics of 1C-3Cr steel using SEM Tribosystem as in-situ system. Results show that the droplet occurred at ion implantation becomes the cause of severe wear. Therefore, the ion-implanted surface should be removed the droplet to improve wear resistance.

Temperature Measurement of the Contact Surface from the Analysis of Temperature Distribution of the Hot Spots (열원의 온도분포 해석을 통한 접촉표면의 온도측정)

  • 정동윤
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.16-21
    • /
    • 1993
  • A method has been developed to measure the surface temperature in a sliding tribosystem. The determination of the surface temperature was inferred from the temperature of hot spots which were generated by frictional heat. The temperature of hot spots was determined by regressing those digitized data on Gecim-Winer's theoretical model. The experimental results are discussed considering the important factors such as PV and frictional heat. The surface temperature rise is related to the thermal conductivity in low PV range. As PV increases, it reaches nearly constant value called the critical temperature.

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.

A Study on the Friction and Wear Characteristics of TiC, TiN and Ti(CN) with PECVD Process (PECVD 공정에 의한 TiC, TiN 및 Ti(CN)의 마찰 마모 특성 연구)

  • Rhee Bong Goo;Jeon Ghan Yeol;Kim Jung Ki;Kim Dong Hyun;Oh Seong Mo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2005
  • In order to determine the wear Properties of PECVD ceramic coatings, wear process was evaluated using the coated pin of Falex Tribosystem. Coating materials deposited wear the TiC, TiN and Ti(CN). An experimental process was established to determine the tribological characteristics of friction and wear behavior under the variation of applied load, temperature and sliding distance by the Falex test machine. The experimental results indicate that TiN coating compared with TiC coating on e materials have e excellent friction and wear characteristics. However TiC coating compared i친 TiN coatings have a low friction coefficient with steel and good thermal stability, and Ti(CN) has the excellent anti-wear properly as well as the superiority of extreme pressure property. Compound coating compared wi simple coatings show improved tribological characteristics.

세라믹 미끄럼 마멸기구에 관한 파괴역학적 고찰

  • 김석삼;김상우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.04a
    • /
    • pp.70-79
    • /
    • 1993
  • 세라믹은 금속에 비해서 밀도가 낮고, 내마멸성이 우수하고, 열팽창계수가 작고, 높은 온도범위에 걸쳐서 안정성과 경도를 유지함으로 기계구조용재료로서 유망시 되고 있다. 앞으로 세라믹부품에 대한 수요는 더욱 증가하리라고 예상하고 있으며, 세라믹의 응용이 시도되고 있는 부품은 더욱 다양화되어가고 있는 추세이다. 그러나, 세라믹재료에 관한 신뢰할만한 데이터베이스는 확립되지 못한 상태이고, 트라이보시스템에 관한 수명예측과 설계를 위한 기초 자료도 확립하지 못한 상태에 있다. 세라믹재료에 관한 수명예측과 설계를 위해서는 세라믹재료의 트라이보시스템(tribosystem)에서의 마멸기구의 규명과 마멸율을 평가할 수 있는 마멸식을 구하는 것이 가장 기본적인 과제라 할 수 잇다. 따라서 본 연구에서는 최신 기법에 의해서 제조된 HIP제 질화규소와 지르코니아를 실험재료로 하여 무윤활하에서의 미끄럼 마찰$\cdot$마멸실험을 수행하여 마찰$\cdot$마멸특성을 규명하고, SEM을 이용한 마멸면의 미시적 관찰을 통해서 세라믹의 마멸기구를 조사하여 세라믹마멸기구의 마멸모델을 제히하고자 한다. 제시된 마멸모델에 파괴역학을 도입하여 이론해석과 고찰을 수행하여 보다 실용적인 세라믹의 마멸율을 평가할 수 있는 새료운 무차원파라메타를 제안하고자 한다.

  • PDF

[ $SRV^{(R)}$ ]-Testing of the Tribosystem Piston Ring and Cylinder Liner Outside the Engine

  • Woydt Mathias;Ebrecht Johannes
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.58-64
    • /
    • 2005
  • An OEM driven working group started in January 2004 to elaborate the philosophies, concepts and test procedures for testing piston ring and cylinder liner materials as well as engine oils outside the engine using the $SRV^{(R)}$ test equipment. The different $SRV^{(R)}$ test philosophies in use by OEMs are compiled. The working group focuses on a.) ASTM sequence VIB (Fuel economy by aging oils), b.) friction and wear in the top dead region under mixed/boundary lubrication, c.) extreme pressure load under mixed/boundary lubrication and d.) hydrodynamic friction. Tribological test result and precision data are presented.