• Title/Summary/Keyword: tribology tests

Search Result 344, Processing Time 0.025 seconds

Correlation of oxidation, Crosslinking, and Wear of UHMWPE (초고분자량 폴리에틸렌의 산화, 가교, 마멸과의 상관관계)

  • 이권용;이근호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.296-302
    • /
    • 1999
  • The effect of post-irradiation shelf-aging time on the wear of orthopaedic grade UHMWPE was investigated, and wear results were correlated with the time-dependent microstructural changes of polyethylene after gamma irradiation sterilization. The levels of oxidation and crosslinking in the shelf-aged acetabular liners were examined by FTIR and hot xylene extraction, respectively, and uni-directional repeat pass sliding wear tests were conducted by using a pin-on-disc wear tester. Gamma irradiation sterilization in the air environment caused an increase of oxidation, crosslinking, and wear resistance. With aging, however, oxidation progressed and decreased the level of crosslinking. This resulted in a decrease of wear resistance of UHMWPE that was accompanied with the existence of white bands and brittle cracking.

  • PDF

A Study on the Engine Friction & Lubrication Characteristics related with Oil Aeration (오일 Aeration에 따른 엔진의 마찰 및 윤활 특성에 대한 연구)

  • 김영직;이창희;윤정의
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.184-189
    • /
    • 1999
  • This Paper presents the friction and lubrication charateristic related with oil aeration. It is well known that oil aeration occurs severe problem on lubrication system, in particular, in the engine bearings and hydraulic lash adjuster. In this study, engine tests were carried out in motoring conditions. In order to investigate oil aeration characteristics, we measured oil aeration with respect to oil temperature, oil viscosity, modified oil drain system. From the results, we concluded that aeration can be reduced by improving oil drain system and FMEP can be reduced by minimising of aeration.

  • PDF

High Temperature Wear Behavior of Inconel 690 Steam Generator tube (인코벨 690 증기발생기 세관의 고온 마모 거동)

  • 홍진기;김인섭;김형남;장기상
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.59-62
    • /
    • 2001
  • Flow induced vibration in steam generators has caused dynamic interactions between tubes and contacting materials resulting in fretting wear . Series of experiments have been performed to examine the wear properties of Inconel 690 steam generator tubes in various environmental conditions. For the present study, the test rig was designed to examine the fretting wear and rolling wear properties in high temperature(room temperature - 290。C) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of the steam generator tube materials. To investigate the wear mechanism of material, the worn was observed using scanning electron microscopy. The weight loss increase at higher test temperature was caused by the decrease of water viscosity and the mechanical property change of tube material. The mechanical property changes of steam generator tube material, such as decrease of hardness or yield stress in the high temperature tests. From the SEM observation of worn surfaces, the severe wear scars were observed in specimens tested at the higher temperature.

  • PDF

Relationship between Spring Shapes and the Ratio of wear Volume to the Worn Area in Nuclear Fuel Fretting

  • Lee, Young-Ho;Kim, Hyung-Kyu;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • Sliding and impact/sliding wear test in room temperature air and water were performed to evaluate the effect of spring shapes on the wear mechanism of a fuel rod. The main focus was to quantitatively compare the wear behavior of a fuel rod with different support springs (i.e. two concaves, a convex and a flat shape) using a ratio of wear volume to worn area (De)-The results indicated that the wear volumes at each spring condition were varied with the change of test environment and loading type. However, the relationship between the wear volume and worn area was determined by only spring shape even though the wear tests were carried out at different test conditions. From the above results, the optimized spring shape which has more wear-resistant could be determined using the analysis results of the relation between the variation of De and worn surface observations in each test condition.

A Theoretical and Experimental Study on the Tribological Size Effect in Microforming Processes (마이크로 성형에서 마찰거동의 크기효과에 대한 이론적 및 실험적 연구)

  • Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.394-400
    • /
    • 2013
  • Microforming is a very efficient and economical technology to fabricate very small metallic parts in various applications. In order to extend the use of this forming technology for the production of microparts, the size effect, which occurs with the reduction of part size and affects the forming process significantly, must be thoroughly investigated. In this study, the tribological size effect in microforming was studied using modeling and scaled ring compression experiments. A micro-scale friction approach based on the slip-line field theory and lubricant pocket model was used to understand the friction mechanism and explain the tribological size effect. Ring compression tests were performed to analyze the interfacial friction condition from the deformation characteristics of the ring specimens. In addition, finite element analysis results were utilized to quantitatively determine the size-dependent frictional behavior of materials in various process conditions. By comparing theoretical results and experimental measurements for different size factors, the accuracy and reliability of the model were verified.

Tribological Behavior of Electro-pressure Sintered Cobalt-Iron, Cobalt-Nickel, and Cobalt-Iron-Nickel Compacts

  • Kim, Yong-Suk;Kwon, Yong-Jin;Kim, Tai-Woong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1124-1125
    • /
    • 2006
  • Dry sliding wear behavior of electro-pressure sintered Co-Fe, Co-Ni and Co-Fe-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered compacts disk specimens against alumina $(Al_2O_3)$ and silica $(SiO_2)$ ball counterparts at various loads ranging from 3N to 12N. Two sliding speeds of 0.1m/sec and 0.2m/sec and a fixed sliding distance of 1,000m were employed. Worn surfaces and cross sections of them were examined by a scanning electron microscopy, and wear mechanism of the compacts was investigated. Effects of the oxide layer that was formed on wearing surface of the compacts on the wear were also studied.

  • PDF

Development of a Planetary Roller Type Traction Drive (유성 로울러형 트랙션 드라이브 개발)

  • 박태조;하해용;문호근;정현기;독고욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.360-366
    • /
    • 2001
  • This paper show the designing, manufacturing and performance test procedure of a high speed, fixed ratio planetary roller type traction drive as a speed reducer. The arrangement and size design for sun roller, planetary rollers and ring roller are carried out and a proper pre-load mechanism are adopted. To improve transmitting power capacity and endurance limit, nitro-carburized bearing steel and a synthetic traction oil are used. The manufactured and assembled traction drive operated successfully under unloaded conditions. Further tests for various load and speed conditions are executing now to improve the performance of the traction drive.

  • PDF

Sliding Wear Characteristics of High Speed Steel by Powder Metallurgy under several Testing Temperature (분말고속도공구강의 작동온도에 따른 미끄럼마모특성해석)

  • 이한영;노정균;배종수;김용진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.135-140
    • /
    • 2001
  • In metal cutting at the tool-chip interface, friction generates considerable amount of heat. Thus, tile .knowledge of wear properties or the cutting tool material in high temperature has been known as one of tile important factors in need of clarification. The authors presented the wear properties of 5%V-5%Co-1%Nb high speed steel, fabricated by powder metallurgy, in room temperature in a previous article. The objective of this paper is to clarify tile effects of temperature ell its wear properties. Wear tests in sliding conditions under various temperatures have been conducted. The results indicate that tile wear properties of tile tool material in high temperature as well as in room temperature are excellent. It may be deduced that the oxide layer formed on the vol-n surface at high temperature is stable enough to prevent wear due to tile high temperature strength of its matrix.

  • PDF

A Study on Erosion Properties of Sialon Ceramics by Hot-Pressing (열간가압소결법으로 제조된 Sialon세라믹스의 고온 Erosion 특성에 관한 연구)

  • 여인웅;임대순;박동수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.20-24
    • /
    • 1996
  • Three kinds of the sialon ceramics with and without TiN additions were hot pressed. Hardness and fracture toughness were measured with prepared specimens to study the effect of additives on the mechanical properties. A gas blast type erosion tester was employed to examine erosion behavior of the specimens up to 600 $^{\circ}$C. Erosion tests showed an increase of erosion rate up to 400 $^{\circ}$C and a gradual decrease of erosion rate 500 $^{\circ}$C for all kinds of sialon. The results also showed that erosion rates of the sialons were controlled better by microstructure factors than by mechanical properties such as fracture toughness.

  • PDF

A Study of Friction Characteristics according to the Morphology of Solid Transfer Film (고체윤활막 형상에 따른 마찰특성의 변화에 관한 연구)

  • Lim, Hyun-Woo;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.310-317
    • /
    • 2000
  • Tribological properties of friction materials containing different volume ratios of solid lubricants (graphite and MoS$_2$) were studied using a pad-on-disk type friction tester. Morphology and thickness of the friction film were carefully examined to correlate the friction performance with the property of the friction film. Results showed that the friction materials containing 16vo1. % of graphite and 5 vol. % of MoS$_2$exhibited best friction stability among others. In particular, the thickness of the friction film decreased as the amount of MoS$_2$increased and severe friction oscillation was observed when the friction material contained MoS$_2$only (21 vol. %). Microscopic observations and friction tests suggested that the coherent thick transfer film improved the friction stability.

  • PDF