Background and objective: Urban street trees play an important role in carbon reduction in cities where greenspace is scarce. There are ongoing studies on carbon reduction by street trees. However, information on the carbon reduction capacity of street trees based on field surveys is still limited. This study aimed to quantify carbon uptake and storage by urban street trees and suggest a method to improve planting of trees in order to increase their carbon reduction capacity. Methods: The cities selected were Sejong, Chungju, and Jeonju among cities without research on carbon reduction, considering the regional distribution in Korea. In the cities, 155 sample sites were selected using systematic sampling to conduct a field survey on street environments and planting structures. The surveyed data included tree species, diameter at breast height (DBH), diameter at root collar (DRC), height, crown width, and vertical structures. The carbon uptake and storage per tree were calculated using the quantification models developed for the urban trees of each species. Results: The average carbon uptake and storage of street trees were approximately 7.2 ± 0.6 kg/tree/yr and 87.1 ± 10.2 kg/tree, respectively. The key factors determining carbon uptake and storage were tree size, vertical structure, the composition of tree species, and growth conditions. The annual total carbon uptake and storage were approximately 1,135.8 tons and 22,737.8 tons, respectively. The total carbon uptake was about the same amount as carbon emitted by 2,272 vehicles a year. Conclusion: This study has significance in providing the basic unit to quantify carbon uptake and storage of street trees based on field surveys. To improve the carbon reduction capacity of street trees, it is necessary to consider planning strategies such as securing and extending available grounds and spaces for high-density street trees with a multi-layered structure.
Kim, Tae-Ho;Lee, Yong- Taeck;Hwang, E-Pyo;Won, Jai-Mu
Journal of the Korean Society for Railway
/
v.11
no.3
/
pp.216-224
/
2008
In general, based on criteria of subway law, radius 500m from subway station is defined as SIA(Subway Station Influence Area). Therefore, in this paper, selection models of SIA are developed to identify appropriate SIA for recently developed 4 new towns based based on CART analysis. As a result, following outputs are obtained; (1) walking distance from subway station is the most influential factor to define SIA (2) SIAs vary with new towns (i.e., bundang city: 856m, ilsan sanbon city 508m, pyungchon city 495m), and (3) walking distance from subway station is influential to land price of SIA. In addition, bundang and pyungchon new town are more affected in land price and walking distance. Therefore, it is desirable for current definition of SIA (radius 500m from subway station) to reflect characteristics of land use and walking distance in the new towns.
Seonghwan Park;Minseok Kim;Eunseo Baek;Junghoon Park
Smart Media Journal
/
v.12
no.11
/
pp.36-47
/
2023
Industrial Control System(ICS), which controls facilities at major industrial sites, is increasingly connected to other systems through networks. With this integration and the development of intelligent attacks that can lead to a single external intrusion as a whole system paralysis, the risk and impact of security on industrial control systems are increasing. As a result, research on how to protect and detect cyber attacks is actively underway, and deep learning models in the form of unsupervised learning have achieved a lot, and many abnormal detection technologies based on deep learning are being introduced. In this study, we emphasize the application of preprocessing methodologies to enhance the anomaly detection performance of deep learning models on time series data. The results demonstrate the effectiveness of a Wavelet Transform (WT)-based noise reduction methodology as a preprocessing technique for deep learning-based anomaly detection. Particularly, by incorporating sensor characteristics through clustering, the differential application of the Dual-Tree Complex Wavelet Transform proves to be the most effective approach in improving the detection performance of cyber attacks.
Journal of the Institute of Convergence Signal Processing
/
v.4
no.4
/
pp.30-39
/
2003
In this paper, we carried out the performance evaluation of HM-Net(Hidden Markov Network) speech recognition system for Korean speech databases. We adopted to construct acoustic models using the HM-Nets modified by HMMs(Hidden Markov Models), which are widely used as the statistical modeling methods. HM-Nets are carried out the state splitting for contextual and temporal domain by PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) algorithm, which is modified the original SSS algorithm. Especially it adopted the phonetic decision tree to effectively express the context information not appear in training speech data on contextual domain state splitting. In case of temporal domain state splitting, to effectively represent information of each phoneme maintenance in the state splitting is carried out, and then the optimal model network of triphone types are constructed by in the parameter. Speech recognition was performed using the one-pass Viterbi beam search algorithm with phone-pair/word-pair grammar for phoneme/word recognition, respectively and using the multi-pass search algorithm with n-gram language models for sentence recognition. The tree-structured lexicon was used in order to decrease the number of nodes by sharing the same prefixes among words. In this paper, the performance evaluation of HM-Net speech recognition system is carried out for various recognition conditions. Through the experiments, we verified that it has very superior recognition performance compared with the previous introduced recognition system.
Proceedings of the Korea Inteligent Information System Society Conference
/
2006.06a
/
pp.122-129
/
2006
The context-awareness has become the one of core technologies and the indispensable function. for application services in ubiquitous computing environment. In this research, we incorporated the capability of context-awareness in a music recommendation system. Our proposed system consists of such components as Intention Module, Mood Module and Recommendation Module. Among these modules, the Intention Module infers whether a user wants to listen to the music or not from the environmental context information. We built the Intention Module using data mining techniques such as decision tree, support vector machine and case-based reasoning. The results showed that the case-based reasoning model outperformed the other models and its accuracy was 84.1%.
Communications for Statistical Applications and Methods
/
v.31
no.6
/
pp.627-644
/
2024
Quantile regression models have become popular due to their benefits in obtaining robust estimates. Some machine learning (ML) models can estimate conditional quantiles. However, current ML methods mainly focus on just adapting quantile regression. In this paper, we propose a local quantile ensemble based on ML methods, which averages multiple estimated quantiles near the target quantile. It is designed to enhance the stability and accuracy of the quantile fits. This approach extends the composite quantile regression algorithm that typically considers the central tendency under a linear model. The proposed methods can be applied to various types of data having nonlinear and heterogeneous trend. We provide an empirical rule for choosing quantiles around the target quantile. The bias-variance tradeoff inherent in this method offers performance benefits. Through empirical studies using Monte Carlo simulations and real data sets, we demonstrate that the proposed method can significantly improve quantile estimation accuracy and stabilize the quantile fits.
We propose a method for selection of input-output factors in DEA. It is designed to select better combinations of input-output factors that are well suited for evaluating substantial performance of DMUs. Several selected DEA models with different input-output factors combinations are evaluated, and the relationship between the computed efficiency scores and a single performance criterion of DMUs is investigated using decision tree. Based on the results of decision tree analysis, a relatively better DEA model can be chosen, which is expected to well represent the true performance of DMUs. We illustrate the effectiveness of the proposed method by applying it to the efficiency evaluation of 101 listed companies in steel and metal industry.
For large vocabulary speech recognition using HMMs, context-dependent subword units have been often employed. However, when context-dependent phone models are used, they result in a system which has too may parameters to train. The problem of too many parameters and too little training data is absolutely crucial in the design of a statistical speech recognizer. Furthermore, when building large vocabulary speech recognition systems, unseen triphone problem is unavoidable. In this paper, we propose the modified phonetic decision tree algorithm for the automatic prediction of unseen triphones which has advantages solving these problems through following two experiments in Japanese contexts. The baseline experimental results show that the modified tree based clustering algorithm is effective for clustering and reducing the number of states without any degradation in performance. The task experimental results show that our proposed algorithm also has the advantage of providing a automatic prediction of unseen triphones.
International Journal of Computer Science & Network Security
/
v.21
no.7
/
pp.324-330
/
2021
Agriculture is one of the essential needs of human life on planet Earth. It is the source of food and earnings for many individuals around the world. The economy of many countries is associated with the agriculture sector. Lots of diseases exist that attack various fruits and crops. Apple Tree Leaves also suffer different types of pathological conditions that affect their production. These pathological conditions include apple scab, cedar apple rust, or multiple diseases, etc. In this paper, an automatic detection framework based on deep learning is investigated for apple leaves disease classification. Different pre-trained models, VGG16, ResNetV2, InceptionV3, and MobileNetV2, are considered for transfer learning. A combination of parameters like learning rate, batch size, and optimizer is analyzed, and the best combination of ResNetV2 with Adam optimizer provided the best classification accuracy of 94%.
Due to the nature of the conjunctive Cone Penetration Test(CPT), which does not verify the actual sample directly, geotechnical engineers commonly classify the underground geomaterials using CPT results with the classification diagrams proposed by various researchers. However, such classification diagrams may fail to reflect local geotechnical characteristics, potentially resulting in misclassification that does not align with the actual stratification in regions with strong local features. To address this, this paper presents an objective method for more accurate local CPT soil classification criteria, which utilizes C4.5 decision tree models trained with the CPT results from the clay-dominant southern coast of Korea and the sand-dominant region in South Carolina, USA. The results and analyses demonstrate that the C4.5 algorithm, in conjunction with oversampling, outlier removal, and pruning methods, can enhance and optimize the decision tree-based CPT soil classification model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.