• Title/Summary/Keyword: tree-based models

Search Result 437, Processing Time 0.022 seconds

Improvement of the Planting Method to Increase the Carbon Reduction Capacity of Urban Street Trees

  • Kim, Jin-Young;Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.2
    • /
    • pp.219-227
    • /
    • 2021
  • Background and objective: Urban street trees play an important role in carbon reduction in cities where greenspace is scarce. There are ongoing studies on carbon reduction by street trees. However, information on the carbon reduction capacity of street trees based on field surveys is still limited. This study aimed to quantify carbon uptake and storage by urban street trees and suggest a method to improve planting of trees in order to increase their carbon reduction capacity. Methods: The cities selected were Sejong, Chungju, and Jeonju among cities without research on carbon reduction, considering the regional distribution in Korea. In the cities, 155 sample sites were selected using systematic sampling to conduct a field survey on street environments and planting structures. The surveyed data included tree species, diameter at breast height (DBH), diameter at root collar (DRC), height, crown width, and vertical structures. The carbon uptake and storage per tree were calculated using the quantification models developed for the urban trees of each species. Results: The average carbon uptake and storage of street trees were approximately 7.2 ± 0.6 kg/tree/yr and 87.1 ± 10.2 kg/tree, respectively. The key factors determining carbon uptake and storage were tree size, vertical structure, the composition of tree species, and growth conditions. The annual total carbon uptake and storage were approximately 1,135.8 tons and 22,737.8 tons, respectively. The total carbon uptake was about the same amount as carbon emitted by 2,272 vehicles a year. Conclusion: This study has significance in providing the basic unit to quantify carbon uptake and storage of street trees based on field surveys. To improve the carbon reduction capacity of street trees, it is necessary to consider planning strategies such as securing and extending available grounds and spaces for high-density street trees with a multi-layered structure.

Development of Selection Model of Subway Station Influence Area (SIA) in New town using Categorical and Regression Tree (CART) (CART분석을 이용한 신도시지역의 지하철 역세권 설정에 관한 연구)

  • Kim, Tae-Ho;Lee, Yong- Taeck;Hwang, E-Pyo;Won, Jai-Mu
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.216-224
    • /
    • 2008
  • In general, based on criteria of subway law, radius 500m from subway station is defined as SIA(Subway Station Influence Area). Therefore, in this paper, selection models of SIA are developed to identify appropriate SIA for recently developed 4 new towns based based on CART analysis. As a result, following outputs are obtained; (1) walking distance from subway station is the most influential factor to define SIA (2) SIAs vary with new towns (i.e., bundang city: 856m, ilsan sanbon city 508m, pyungchon city 495m), and (3) walking distance from subway station is influential to land price of SIA. In addition, bundang and pyungchon new town are more affected in land price and walking distance. Therefore, it is desirable for current definition of SIA (radius 500m from subway station) to reflect characteristics of land use and walking distance in the new towns.

A Study on Preprocessing Method in Deep Learning for ICS Cyber Attack Detection (ICS 사이버 공격 탐지를 위한 딥러닝 전처리 방법 연구)

  • Seonghwan Park;Minseok Kim;Eunseo Baek;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.36-47
    • /
    • 2023
  • Industrial Control System(ICS), which controls facilities at major industrial sites, is increasingly connected to other systems through networks. With this integration and the development of intelligent attacks that can lead to a single external intrusion as a whole system paralysis, the risk and impact of security on industrial control systems are increasing. As a result, research on how to protect and detect cyber attacks is actively underway, and deep learning models in the form of unsupervised learning have achieved a lot, and many abnormal detection technologies based on deep learning are being introduced. In this study, we emphasize the application of preprocessing methodologies to enhance the anomaly detection performance of deep learning models on time series data. The results demonstrate the effectiveness of a Wavelet Transform (WT)-based noise reduction methodology as a preprocessing technique for deep learning-based anomaly detection. Particularly, by incorporating sensor characteristics through clustering, the differential application of the Dual-Tree Complex Wavelet Transform proves to be the most effective approach in improving the detection performance of cyber attacks.

A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System (Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.30-39
    • /
    • 2003
  • In this paper, we carried out the performance evaluation of HM-Net(Hidden Markov Network) speech recognition system for Korean speech databases. We adopted to construct acoustic models using the HM-Nets modified by HMMs(Hidden Markov Models), which are widely used as the statistical modeling methods. HM-Nets are carried out the state splitting for contextual and temporal domain by PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) algorithm, which is modified the original SSS algorithm. Especially it adopted the phonetic decision tree to effectively express the context information not appear in training speech data on contextual domain state splitting. In case of temporal domain state splitting, to effectively represent information of each phoneme maintenance in the state splitting is carried out, and then the optimal model network of triphone types are constructed by in the parameter. Speech recognition was performed using the one-pass Viterbi beam search algorithm with phone-pair/word-pair grammar for phoneme/word recognition, respectively and using the multi-pass search algorithm with n-gram language models for sentence recognition. The tree-structured lexicon was used in order to decrease the number of nodes by sharing the same prefixes among words. In this paper, the performance evaluation of HM-Net speech recognition system is carried out for various recognition conditions. Through the experiments, we verified that it has very superior recognition performance compared with the previous introduced recognition system.

  • PDF

User's Context Reasoning using Data Mining Techniques (데이터 마이닝 기법을 이용한 사용자 상황 추론)

  • Lee Jae-Sik;Lee Jin-Cheon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.122-129
    • /
    • 2006
  • The context-awareness has become the one of core technologies and the indispensable function. for application services in ubiquitous computing environment. In this research, we incorporated the capability of context-awareness in a music recommendation system. Our proposed system consists of such components as Intention Module, Mood Module and Recommendation Module. Among these modules, the Intention Module infers whether a user wants to listen to the music or not from the environmental context information. We built the Intention Module using data mining techniques such as decision tree, support vector machine and case-based reasoning. The results showed that the case-based reasoning model outperformed the other models and its accuracy was 84.1%.

  • PDF

Local quantile ensemble for machine learning methods

  • Suin Kim;Yoonsuh Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.6
    • /
    • pp.627-644
    • /
    • 2024
  • Quantile regression models have become popular due to their benefits in obtaining robust estimates. Some machine learning (ML) models can estimate conditional quantiles. However, current ML methods mainly focus on just adapting quantile regression. In this paper, we propose a local quantile ensemble based on ML methods, which averages multiple estimated quantiles near the target quantile. It is designed to enhance the stability and accuracy of the quantile fits. This approach extends the composite quantile regression algorithm that typically considers the central tendency under a linear model. The proposed methods can be applied to various types of data having nonlinear and heterogeneous trend. We provide an empirical rule for choosing quantiles around the target quantile. The bias-variance tradeoff inherent in this method offers performance benefits. Through empirical studies using Monte Carlo simulations and real data sets, we demonstrate that the proposed method can significantly improve quantile estimation accuracy and stabilize the quantile fits.

A Method for Selection of Input-Output Factors in DEA (DEA에서 투입.산출 요소 선택 방법)

  • Lim, Sung-Mook
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.44-55
    • /
    • 2009
  • We propose a method for selection of input-output factors in DEA. It is designed to select better combinations of input-output factors that are well suited for evaluating substantial performance of DMUs. Several selected DEA models with different input-output factors combinations are evaluated, and the relationship between the computed efficiency scores and a single performance criterion of DMUs is investigated using decision tree. Based on the results of decision tree analysis, a relatively better DEA model can be chosen, which is expected to well represent the true performance of DMUs. We illustrate the effectiveness of the proposed method by applying it to the efficiency evaluation of 101 listed companies in steel and metal industry.

Modified Phonetic Decision Tree For Continuous Speech Recognition

  • Kim, Sung-Ill;Kitazoe, Tetsuro;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4E
    • /
    • pp.11-16
    • /
    • 1998
  • For large vocabulary speech recognition using HMMs, context-dependent subword units have been often employed. However, when context-dependent phone models are used, they result in a system which has too may parameters to train. The problem of too many parameters and too little training data is absolutely crucial in the design of a statistical speech recognizer. Furthermore, when building large vocabulary speech recognition systems, unseen triphone problem is unavoidable. In this paper, we propose the modified phonetic decision tree algorithm for the automatic prediction of unseen triphones which has advantages solving these problems through following two experiments in Japanese contexts. The baseline experimental results show that the modified tree based clustering algorithm is effective for clustering and reducing the number of states without any degradation in performance. The task experimental results show that our proposed algorithm also has the advantage of providing a automatic prediction of unseen triphones.

  • PDF

Classification of Apple Tree Leaves Diseases using Deep Learning Methods

  • Alsayed, Ashwaq;Alsabei, Amani;Arif, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.324-330
    • /
    • 2021
  • Agriculture is one of the essential needs of human life on planet Earth. It is the source of food and earnings for many individuals around the world. The economy of many countries is associated with the agriculture sector. Lots of diseases exist that attack various fruits and crops. Apple Tree Leaves also suffer different types of pathological conditions that affect their production. These pathological conditions include apple scab, cedar apple rust, or multiple diseases, etc. In this paper, an automatic detection framework based on deep learning is investigated for apple leaves disease classification. Different pre-trained models, VGG16, ResNetV2, InceptionV3, and MobileNetV2, are considered for transfer learning. A combination of parameters like learning rate, batch size, and optimizer is analyzed, and the best combination of ResNetV2 with Adam optimizer provided the best classification accuracy of 94%.

A study on data mining techniques for soil classification methods using cone penetration test results

  • Junghee Park;So-Hyun Cho;Jong-Sub Lee;Hyun-Ki Kim
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.67-80
    • /
    • 2023
  • Due to the nature of the conjunctive Cone Penetration Test(CPT), which does not verify the actual sample directly, geotechnical engineers commonly classify the underground geomaterials using CPT results with the classification diagrams proposed by various researchers. However, such classification diagrams may fail to reflect local geotechnical characteristics, potentially resulting in misclassification that does not align with the actual stratification in regions with strong local features. To address this, this paper presents an objective method for more accurate local CPT soil classification criteria, which utilizes C4.5 decision tree models trained with the CPT results from the clay-dominant southern coast of Korea and the sand-dominant region in South Carolina, USA. The results and analyses demonstrate that the C4.5 algorithm, in conjunction with oversampling, outlier removal, and pruning methods, can enhance and optimize the decision tree-based CPT soil classification model.