• Title/Summary/Keyword: tree-based models

Search Result 437, Processing Time 0.027 seconds

A Study on the Walkability Scores in Jeonju City Using Multiple Regression Models (다중 회귀 모델을 이용한 전주시 보행 환경 점수 예측에 관한 연구)

  • Lee, KiChun;Nam, KwangWoo;Lee, ChangWoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • Attempts to interpret human perspectives using computer vision have been developed in various fields. In this paper, we propose a method for evaluating the walking environment through semantic segmentation results of images from road images. First, the Kakao Map API was used to collect road images, and four-way images were collected from about 50,000 points in JeonJu. 20% of the collected images build datasets through crowdsourcing-based paired comparisons, and train various regression models using paired comparison data. In order to derive the walkability score of the image data, the ranking score is calculated using the Trueskill algorithm, which is a ranking algorithm, and the walkability and analysis using various regression models are performed using the constructed data. Through this study, it is shown that the walkability of Jeonju can be evaluated and scores can be derived through the correlation between pixel distribution classification information rather than human vision.

Development of Diameter Growth Models by Thinning Intensity of Planted Quercus glauca Thunb. Stands

  • Jung, Su Young;Lee, Kwang Soo;Kim, Hyun Soo
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.629-638
    • /
    • 2021
  • Background and objective: This study was conducted to develop diameter growth models for thinned Quercus glauca Thunb. (QGT) stands to inform production goals for treatment and provide the information necessary for the systematic management of this stands. Methods: This study was conducted on QGT stands, of which initial thinning was completed in 2013 to develop a treatment system. To analyze the tree growth and trait response for each thinning treatment, forestry surveys were conducted in 2014 and 2021, and a one-way analysis of variance (ANOVA) was executed. In addition, non-linear least squares regression of the PROC NLIN procedure was used to develop an optimal diameter growth model. Results: Based on growth and trait analyses, the height and height-to-diameter (H/D) ratio were not different according to treatment plot (p > .05). For the diameter of basal height (DBH), the heavy thinning (HT) treatment plot was significantly larger than the control plot (p < .05). As a result of the development of diameter growth models by treatment plot, the mean squared error (MSE) of the Gompertz polymorphic equation (control: 2.2381, light thinning: 0.8478, and heavy thinning: 0.8679) was the lowest in all treatment plots, and the Shapiro-Wilk statistic was found to follow a normal distribution (p > .95), so it was selected as an equation fit for the diameter growth model. Conclusion: The findings of this study provide basic data for the systematic management of Quercus glauca Thunb. stands. It is necessary to construct permanent sample plots (PSP) that consider stand status, location conditions, and climatic environments.

A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting (설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석)

  • Shin, Zian;Moon, Jihoon;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.97-117
    • /
    • 2021
  • Predicting term deposit subscriptions is one of representative financial marketing in banks, and banks can build a prediction model using various customer information. In order to improve the classification accuracy for term deposit subscriptions, many studies have been conducted based on machine learning techniques. However, even if these models can achieve satisfactory performance, utilizing them is not an easy task in the industry when their decision-making process is not adequately explained. To address this issue, this paper proposes an explainable scheme for term deposit subscription forecasting. For this, we first construct several classification models using decision tree-based ensemble learning methods, which yield excellent performance in tabular data, such as random forest, gradient boosting machine (GBM), extreme gradient boosting (XGB), and light gradient boosting machine (LightGBM). We then analyze their classification performance in depth through 10-fold cross-validation. After that, we provide the rationale for interpreting the influence of customer information and the decision-making process by applying Shapley additive explanation (SHAP), an explainable artificial intelligence technique, to the best classification model. To verify the practicality and validity of our scheme, experiments were conducted with the bank marketing dataset provided by Kaggle; we applied the SHAP to the GBM and LightGBM models, respectively, according to different dataset configurations and then performed their analysis and visualization for explainable term deposit subscriptions.

Design and Performance Evaluation of an Indexing Method for Partial String Searches (문자열 부분검색을 위한 색인기법의 설계 및 성능평가)

  • Gang, Seung-Heon;Yu, Jae-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1458-1467
    • /
    • 1999
  • Existing index structures such as extendable hashing and B+-tree do not support partial string searches perfectly. The inverted file method and the signature file method that are used in the web retrieval engine also have problems that they do not provide partial string searches and suffer from serious retrieval performance degradation respectively. In this paper, we propose an efficient index method that supports partial string searches and achieves good retrieval performance. The proposed index method is based on the Inverted file structure. It constructs the index file with patterns that result from dividing terms by two syllables to support partial string searches. We analyze the characteristics of our proposed method through simulation experiments using wide range of parameter values. We analyze the derive analytic performance evaluation models of the existing inverted file method, signature file method and the proposed index method in terms of retrieval time and storage overhead. We show through performance comparison based on analytic models that the proposed method significantly improves retrieval performance over the existing method.

  • PDF

Discriminating Eggs from Two Local Breeds Based on Fatty Acid Profile and Flavor Characteristics Combined with Classification Algorithms

  • Dong, Xiao-Guang;Gao, Li-Bing;Zhang, Hai-Jun;Wang, Jing;Qiu, Kai;Qi, Guang-Hai;Wu, Shu-Geng
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.936-949
    • /
    • 2021
  • This study discriminated fatty acid profile and flavor characteristics of Beijing You Chicken (BYC) as a precious local breed and Dwarf Beijing You Chicken (DBYC) eggs. Fatty acid profile and flavor characteristics were analyzed to identify differences between BYC and DBYC eggs. Four classification algorithms were used to build classification models. Arachidic acid, oleic acid (OA), eicosatrienoic acid, docosapentaenoic acid (DPA), hexadecenoic acid, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), unsaturated fatty acids (UFA) and 35 volatile compounds had significant differences in fatty acids and volatile compounds by gas chromatography-mass spectrometry (GC-MS) (p<0.05). For fatty acid data, k-nearest neighbor (KNN) and support vector machine (SVM) got 91.7% classification accuracy. SPME-GC-MS data failed in classification models. For electronic nose data, classification accuracy of KNN, linear discriminant analysis (LDA), SVM and decision tree was all 100%. The overall results indicated that BYC and DBYC eggs could be discriminated based on electronic nose with suitable classification algorithms. This research compared the differentiation of the fatty acid profile and volatile compounds of various egg yolks. The results could be applied to evaluate egg nutrition and distinguish avian eggs.

Machine Learning-based Detection of DoS and DRDoS Attacks in IoT Networks

  • Yeo, Seung-Yeon;Jo, So-Young;Kim, Jiyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2022
  • We propose an intrusion detection model that detects denial-of-service(DoS) and distributed reflection denial-of-service(DRDoS) attacks, based on the empirical data of each internet of things(IoT) device by training system and network metrics that can be commonly collected from various IoT devices. First, we collect 37 system and network metrics from each IoT device considering IoT attack scenarios; further, we train them using six types of machine learning models to identify the most effective machine learning models as well as important metrics in detecting and distinguishing IoT attacks. Our experimental results show that the Random Forest model has the best performance with accuracy of over 96%, followed by the K-Nearest Neighbor model and Decision Tree model. Of the 37 metrics, we identified five types of CPU, memory, and network metrics that best imply the characteristics of the attacks in all the experimental scenarios. Furthermore, we found out that packets with higher transmission speeds than larger size packets represent the characteristics of DoS and DRDoS attacks more clearly in IoT networks.

Similarity Assessment for Geometric Query on Mechanical Parts (기계부품의 형상검색은 위한 유사성 평가방법)

  • 김철영;김영호;강석호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.103-112
    • /
    • 2000
  • CAD databases are the core element to the management of product information. A key to the successful use of the databases is a rational method of query to and retrieval from the databases. Although it is parts geometry that users eager to retrieve from the CAD databases, no system yet supports geometry-based query. This paper aims at developing a new method of assessing geometric similarity which can serve as the basis of geometric query for CAD database. The proposed method uses ASVP (Alternating Sums of Volumes with Partitioning) decomposition that is a volumetric representation of a part obtained from its boundary representation. A measure of geometric similarity between two solid models is defined on their ASVP tree representations. The measure can take into account overall shapes of parte, shapes of features and their locations. Several properties that a similarity measure needs to satisfy are discussed. The geometric query developed in this paper can be used in a wide range of applications using CAD databases, which include similarity-based design retrieval, variant process planning, and components selection from part library. An experiment has been carried out to demonstrate the effectiveness of the method, and the results are presented.

  • PDF

A Framework for Semantic Interpretation of Noun Compounds Using Tratz Model and Binary Features

  • Zaeri, Ahmad;Nematbakhsh, Mohammad Ali
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.743-752
    • /
    • 2012
  • Semantic interpretation of the relationship between noun compound (NC) elements has been a challenging issue due to the lack of contextual information, the unbounded number of combinations, and the absence of a universally accepted system for the categorization. The current models require a huge corpus of data to extract contextual information, which limits their usage in many situations. In this paper, a new semantic relations interpreter for NCs based on novel lightweight binary features is proposed. Some of the binary features used are novel. In addition, the interpreter uses a new feature selection method. By developing these new features and techniques, the proposed method removes the need for any huge corpuses. Implementing this method using a modular and plugin-based framework, and by training it using the largest and the most current fine-grained data set, shows that the accuracy is better than that of previously reported upon methods that utilize large corpuses. This improvement in accuracy and the provision of superior efficiency is achieved not only by improving the old features with such techniques as semantic scattering and sense collocation, but also by using various novel features and classifier max entropy. That the accuracy of the max entropy classifier is higher compared to that of other classifiers, such as a support vector machine, a Na$\ddot{i}$ve Bayes, and a decision tree, is also shown.

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.

Multi-dimensional Query Authentication for On-line Stream Analytics

  • Chen, Xiangrui;Kim, Gyoung-Bae;Bae, Hae-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.154-173
    • /
    • 2010
  • Database outsourcing is unavoidable in the near future. In the scenario of data stream outsourcing, the data owner continuously publishes the latest data and associated authentication information through a service provider. Clients may register queries to the service provider and verify the result's correctness, utilizing the additional authentication information. Research on On-line Stream Analytics (OLSA) is motivated by extending the data cube technology for higher multi-level abstraction on the low-level-abstracted data streams. Existing work on OLSA fails to consider the issue of database outsourcing, while previous work on stream authentication does not support OLSA. To close this gap and solve the problem of OLSA query authentication while outsourcing data streams, we propose MDAHRB and MDAHB, two multi-dimensional authentication approaches. They are based on the general data model for OLSA, the stream cube. First, we improve the data structure of the H-tree, which is used to store the stream cube. Then, we design and implement two authentication schemes based on the improved H-trees, the HRB- and HB-trees, in accordance with the main stream query authentication framework for database outsourcing. Along with a cost models analysis, consistent with state-of-the-art cost metrics, an experimental evaluation is performed on a real data set. It exhibits that both MDAHRB and MDAHB are feasible for authenticating OLSA queries, while MDAHRB is more scalable.