Since data mining attempts to find unknown facts or rules by dealing with also vaguely-known data sets, it always suffers from high error rate. In order to reduce the error rate, many researchers have employed multiple models in solving a problem. In this research, we present a new type of multiple models, called DyMoS, whose unique feature is that it classifies the input data and applies the different model developed appropriately for each class of data. In order to evaluate the performance of DyMoS, we applied it to a real customer churn problem of an automobile insurance company, The result shows that the DyMoS outperformed any model which employed only one data mining technique such as artificial neural network, decision tree and case-based reasoning.
In this study, the prevalence of osteoporosis was predicted based on 10 independent variables such as age, weight, and alcohol consumption and 4 tree-based machine-learning models, and the performance of each model was compared. Also the model with the highest performance was used to check the performance by clearing the independent variable, and Area Under Curve(ACU) was utilized to evaluate the performance of the model. The ACU for each model was Decision tree 0.663, Random forest 0.704, GBM 0.702, and XGBoost 0.710 and the importance of the variable was shown in the order of age, weight, and family history. As a result of using XGBoost, the highest performance model and clearing independent variables, the ACU shows the best performance of 0.750 with 7 independent variables. This data suggests that this method be applied to predict osteoporosis, but also other various diseases. In addition, it is expected to be used as basic data for big data research in the health care field.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.6
/
pp.730-736
/
2011
In this paper, we designed the models for pattern classification which can reflect the latest trend in time series. It has been shown that fusion models based on statistical and AI methods are superior to traditional ones for the pattern classification model supporting decision making. Especially, the hit rates of pattern classification models combined with fuzzy theory are relatively increased. The statistical SVM models combined with fuzzy membership function, or the models combining neural network and FCM has shown good performance. BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, and Regression Analysis were used for pattern classification models in the experiments of this paper. The economical indices DB with time series properties of the financial market(Korea, KOSPI200 DB) and the electrocardiogram DB of arrhythmia patients in hospital emergencies(USA, MIT-BIH DB) were used for data base.
We propose a method for tree-inspired chair modeling that can generate a tree-branch pattern in the skeleton of an arbitrary chair shape. Unlike existing methods that merge multiple-input models, the proposed method requires only one mesh as input, namely the contour mesh of the user's desired part, to model the chair with a branch pattern generated by tree-growth simulation. We propose a new method for the efficient extraction of the contour-mesh region in the tree-branch pattern. First, we extract the contour mesh based on the face area of the input mesh. We then use the front and back mesh information to generate a skeleton mesh that reconstructs the connection information. In addition, to obtain the tree-branch pattern matching the shape of the input model, we propose a three-way tree-growth simulation method that considers the tangent vector of the shape surface. The proposed method reveals a new type of furniture modeling by using an existing furniture model and simple parameter values to model tree branches shaped appropriately for the input model skeleton. Our experiments demonstrate the performance and effectiveness of the proposed method.
Journal of the Institute of Convergence Signal Processing
/
v.2
no.4
/
pp.9-15
/
2001
In this paper we investigate context dependent acoustic models to improve the performance of the Korean speech recognition . The algorithm are using the Korean phonological rules and decision tree, By Successive State Splitting(SSS) algorithm the Hidden Merkov Netwwork(HM-Net) which is an efficient representation of phoneme-context-dependent HMMs, can be generated automatically SSS is powerful technique to design topologies of tied-state HMMs but it doesn't treat unknown contexts in the training phoneme contexts environment adequately In addition it has some problem in the procedure of the contextual domain. In this paper we adopt a new state-clustering algorithm of SSS, called Phonetic Decision Tree-based SSS (PDT-SSS) which includes contexts splits based on the Korean phonological rules. This method combines advantages of both the decision tree clustering and SSS, and can generated highly accurate HM-Net that can express any contexts To verify the effectiveness of the adopted methods. the experiments are carried out using KLE 452 word database and YNU 200 sentence database. Through the Korean phoneme word and sentence recognition experiments. we proved that the new state-clustering algorithm produce better phoneme, word and continuous speech recognition accuracy than the conventional HMMs.
Korean Journal of Agricultural and Forest Meteorology
/
v.6
no.1
/
pp.49-60
/
2004
Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.5
/
pp.325-330
/
2023
This paper proposes to apply machine learning to the process of predicting the slab thickness based on the structural analysis results or experience and subjectivity of engineers in the design of bridge data construction to enable digital-based decision-making. This study aims to build a reliable design environment by utilizing machine learning techniques to provide guide values to engineers in addition to structural analysis for slab thickness selection. Based on girder bridges, which account for the largest proportion of bridge data, a prediction model process for predicting slab thickness among superstructures was defined. Various machine learning models (Linear Regress, Decision Tree, Random Forest, and Muliti-layer Perceptron) were competed for each process to produce the prediction value for each process, and the optimal model was derived. Through this study, the applicability of machine learning techniques was confirmed in areas where slab thickness was predicted only through existing structural analysis, and an accuracy of 95.4% was also obtained. models can be utilized in a more reliable construction environment if the accuracy of the prediction model is improved by expanding the process
Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
Computers and Concrete
/
v.21
no.4
/
pp.407-417
/
2018
Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.
Purpose: The purpose of this study was to compare sociodemographic characteristics of a normal cognitive group and mild cognitive impairment group, and establish prediction models of Mild Cognitive Impairment (MCI). Methods: This study was a secondary data analysis research using data from "the 4th Korea Longitudinal Study of Ageing" of the Korea Employment Information Service. A total of 6,405 individuals, including 1,329 individuals with MCI and 5,076 individuals with normal cognitive abilities, were part of the study. Based on the panel survey items, the research used 28 variables. The methods of analysis included a χ2-test, logistic regression analysis, decision tree analysis, predicted error rate, and an ROC curve calculated using SPSS 23.0 and SAS 13.2. Results: In the MCI group, the mean age was 71.4 and 65.8% of the participants was women. There were statistically significant differences in gender, age, and education in both groups. Predictors of MCI determined by using a logistic regression analysis were gender, age, education, instrumental activity of daily living (IADL), perceived health status, participation group, cultural activities, and life satisfaction. Decision tree analysis of predictors of MCI identified education, age, life satisfaction, and IADL as predictors. Conclusion: The accuracy of logistic regression model for MCI is slightly higher than that of decision tree model. The implementation of the prediction model for MCI established in this study may be utilized to identify middle-aged and elderly people with risks of MCI. Therefore, this study may contribute to the prevention and reduction of dementia.
Purpose This paper analyzed the impacts of domestic stock market by a global pandemic such as COVID-19. We investigated how the overall pattern of the stock market changed due to the impact of the COVID-19 pandemic. In particular, we analyzed in depth the pattern of stock price, as well, tried to find what factors affect on stock market index(KOSPI) in the healthcare industry due to the COVID-19 pandemic. Design/methodology/approach We built a data warehouse from the databases in various industrial and economic fields to analyze the changes in the KOSPI due to COVID-19, particularly, the changes in the healthcare industry centered on bio-medicine. We collected daily stock price data of the KOSPI centered on the KOSPI-200 about two years before and one year after the outbreak of COVID-19. In addition, we also collected various news related to COVID-19 from the stock market by applying text mining techniques. We designed four experimental data sets to develop decision tree-based prediction models. Findings All prediction models from the four data sets showed the significant predictive power with explainable decision tree models. In addition, we derived significant 10 to 14 decision rules for each prediction model. The experimental results showed that the decision rules were enough to explain the domestic healthcare stock market patterns for before and after COVID-19.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.