• Title/Summary/Keyword: tree network

Search Result 1,173, Processing Time 0.025 seconds

Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique (점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신)

  • Kim, Chulpyo;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.29-39
    • /
    • 2017
  • Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases. In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.

Prediction Model for unfavorable Outcome in Spontaneous Intracerebral Hemorrhage Based on Machine Learning

  • Shengli Li;Jianan Zhang;Xiaoqun Hou;Yongyi Wang;Tong Li;Zhiming Xu;Feng Chen;Yong Zhou;Weimin Wang;Mingxing Liu
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.1
    • /
    • pp.94-102
    • /
    • 2024
  • Objective : The spontaneous intracerebral hemorrhage (ICH) remains a significant cause of mortality and morbidity throughout the world. The purpose of this retrospective study is to develop multiple models for predicting ICH outcomes using machine learning (ML). Methods : Between January 2014 and October 2021, we included ICH patients identified by computed tomography or magnetic resonance imaging and treated with surgery. At the 6-month check-up, outcomes were assessed using the modified Rankin Scale. In this study, four ML models, including Support Vector Machine (SVM), Decision Tree C5.0, Artificial Neural Network, Logistic Regression were used to build ICH prediction models. In order to evaluate the reliability and the ML models, we calculated the area under the receiver operating characteristic curve (AUC), specificity, sensitivity, accuracy, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR). Results : We identified 71 patients who had favorable outcomes and 156 who had unfavorable outcomes. The results showed that the SVM model achieved the best comprehensive prediction efficiency. For the SVM model, the AUC, accuracy, specificity, sensitivity, PLR, NLR, and DOR were 0.91, 0.92, 0.92, 0.93, 11.63, 0.076, and 153.03, respectively. For the SVM model, we found the importance value of time to operating room (TOR) was higher significantly than other variables. Conclusion : The analysis of clinical reliability showed that the SVM model achieved the best comprehensive prediction efficiency and the importance value of TOR was higher significantly than other variables.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

Breeding status and nest site characteristics of Black-faced Spoonbills Platalea minor on Chilsando Islands, Korea (칠산도의 저어새 번식 현황과 둥지장소 특성)

  • Kwon, In-Ki;Kang, Jung-Hoon;Lee, Ki-Sup;Lee, Ji-Yeon;Kim, In-Kyu;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.703-709
    • /
    • 2015
  • A breeding pair of the Black-faced Spoonbill Platalea minor was firstly recorded on Chilsando Islands, Younggwang, Jeollanamdo Province in 1991. Since the mid 2000s, breeding population on the breeding sites has gradually increased. This study was conducted to identify breeding status and nest site characteristics of the species from May to August, 2013 on Chilsando Islands. We recorded number of nests, length and width of the nest base, slope around the nests, nest materials, distances from the nearest nest, presence of nest cover and nesting area. In 2013 breeding season, 25 of 49 nests produced at least one successful fledging. A total of 55 youngs were successfully fledged and number of fledging per nest was 2.20 individuals. Nesting area was $77.8m^2$ and $93.4m^2$ for Sansando and Yuksando Islet, respectively. Soil and soil mixed with tree root were preferred for substrate of nest base over rock and Brassica napus was dominantly selected as nest materials by Black-faced Spoonbills. Nest characteristics of 22 nests in Sasando and Yuksando Islet varied $49.59{\pm}6.53cm$(mean${\pm}$SD) for length of nest base, $41.00{\pm}5.82cm$ for width of nest base, $20.85{\pm}9.96^{\circ}$ for slope above the nest, $34.09{\pm}17.75^{\circ}$ for slope below the nest and $130.82{\pm}84.17cm$ for distances from the nearest nest. Fifteen pairs (68.2%) occupied where nest cover existed. Nest cover were located in front of the nest for 5 pairs, back of the nest for 9 pairs and both front and back of the nest for 1 pair.

Preliminary Landscape Improvement Plan for Gu-ryong Village (구룡 해안마을 경관형성 기본계획)

  • Kim, Yun-Geum;Choi, Jung-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.23-34
    • /
    • 2012
  • This Study is about the "Comprehensive Landscape Improvement Plan for Gu-ryoung Seaside Village that was one of most exhibited projects for developing sea villages." The formulations of the plan were supervised by the Ministry of Land, Transport, and Maritime Affairs and were executed by the Goheung Country. Rather than proposing renovations for the landscape, this study maintains the existing order and attempts to examine the plan by scrutinizing the vernacular design language of the landscape. In the study, community members had the opportunity to express their opinions and ideas about the community through workshops composed of community participation programs, and participated in the decision-making process through consultation meetings. The conclusion of this study was relevant to the activities of the committee on landscape improvement. The Comprehensive Landscape Improvement Plan has three objectives: (1) resorting and modifying the natural landscape, (2) restructuring the roadways, and (3) modifying key spaces. In the end, the role of Gu-ryong Mountain as a background of the landscape was focused on tree planting drives that were undertaken, and accessibility to the sea front was improved. Second, in restructuring the roadways, rough roads were restored and unconnected roads were connected to ensure a network of roads along the sea front, inner roads in the village, roads at the Fringes Mountains, and stone roads on the mud flat. In addition, roads were named according to the character of the landscape and signs were installed. Finally, the existing key spaces, in which community members came together, were restored and new key spaces were created for the outdoor activities of the inhabitants and the diverse experience of visitors. A guideline was also created to regulate private areas such as roofs, walls, fences of residential buildings, and private container boxes and fishing gear along the sea front. The strength of this study is that it is seeking to determine the greatest potential of the landscape and set the plan by examining the lives of community members. Some problems were found during the development of this study. Further, there were problems in the community's understanding as elaborated below. First is the gap between community members' awareness and practice. Even though they were aware of the problems with the village landscape, they hesitated to implement improvements. Second, community members have misunderstandings about the landscape the improvement plan. The local government and the residents have understood this plan as a development project; for example, new building construction or the extension of roads. Third, residents are not aware that continuous attention and improvements are required for the upkeep of the landscape in the sea village. The plan to improve the landscape should promote a balance between making the area as a tourist attraction and maintaining the lives and cultural activities, because the sea village system incorporates settlements, economy, and culture.

Analysis of User′s Satisfaction to the Small Urban Spaces by Environmental Design Pattern Language (환경디자인 패턴언어를 통해 본 도심소공간의 이용만족도 분석에 관한 연구)

  • 김광래;노재현;장동주
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.16 no.3
    • /
    • pp.21-37
    • /
    • 1989
  • Environmental design pattern of the nine Small Urban Spaces at C.B.D. in City of Seoul are surveyed and analyzed for user's satisfaction and behavior under the environmental design evaluation by using Christopher Alexander's Pattern Language. Small Urban Spaces as a part of streetscape are formed by physical factors as well as visual environment and interacting user's behavior. Therefore, user's satisfaction and behavior at the nine Urban Small Spaces were investigated under the further search for some possibilities of application of those Pattern Languages. A pattern language has a structure of a network. It is used in sequence, going through the patterns, moving always from large patterns to smaller, always from the ones which create comes simply from the observation that most of the wonderful places of the city were not blade by architects but by the people. It defines the limited number of arrangements of spaces that make sense in any given culture. And it actually gives us the power to generate these coherent arrangement of space. As a results, 'Plaza', 'Seats'and 'Aecessibility' related design Patterns are highly evaluated by Pattern Frequency, Pattern Interaction and their Composition ranks, thus reconfirm Whyte's Praise of urban Small Spaces in our inner city design environments. According to the multiple regression analysis of user's evaluation, the environmental functions related to the satisfaction were 'Plaza', 'Accessibility' and 'Paving'. According to the free response, user's prefer such visually pleasing environmental design object as 'Waterscape' and 'Setting'. In addition to, the basic needs in Urban Small Spaces are amenity facilities as bench, drinking water and shade for rest.

  • PDF

Ecological Characteristics and Management Program for Buffer Greens at Sinhyeon-Eup, Geoje-Si (거제시 신현읍 완충녹지의 생태적 특성 및 관리방안)

  • SaGong, Young-Bo;Lee, Soo-Dong
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.3
    • /
    • pp.243-256
    • /
    • 2007
  • The purpose of this paper is aimed at identifying the planting condition of greenbelt axis covering forests located at Sinhyeon-eup, Geoje-si and also establishing improvement plans for the ecological organization. The study was executed with buffer green space designed to mitigate noise, which is located at a halfway point linking Mt. Yukkyo(altitude of 50m) and Mt. Jungmae(altitude of 131m). The number of the biotope patterns was classified into 17 in total: the two are urbanized districts such as a townified district and streets and another 15 are greenbelts and open space such as forest biotope, inland water biotope, and landscaping tree plantations biotope. According to the analysis of biotope types, it was estimated that the making use of already established buffer greens as a linking medium with a foothold of Mt. Yukkyo and Jungmae, whose natural eco-system is well suited for habitation of living organism, is the one and only way to the influx of living organism into the downtown area. The green coverage rate of the base green area, sub-base green area and linkage green area was 160.29%, 128.37% and 44.37% respectively; the green capacity coefficient(i.e. GVZ[$Gr{\ddot{u}}nvolumezahl$]) for base green area, sub-base green area and linkage green area was $4.04m^3/m^2,\;3.95m^3/m^2\;and\;0.65m^3/m^2$ respectively. The base green area has constituted multi-layered vegetation structure and thus played a role as habitats for living organism and supply centre of species, whereas the sub-base green area has destroyed lower layer vegetation, and the linkage green area was in bad shape due to the lack of planting volume and damage of the shrub layer. Accordingly, this research paper intended to suggest detailed implementation plans for the improvement in landscape for city dwellers' use and relaxation; in other words, this paper focused on ecological build-up for the Influx of wild birds into the downtown area for the promotion of bio-diversity of species through the linkage of base green areas and the fostering of nature observing trails for citizens as well as the connecting of green areas through the build-up of roadside greens to make these green areas to be efficiently used as corridors for the influx of wild birds and bio-organism habitation and for citizens' using space.