RFID는 RF신호를 이용하여 물체를 식별하는 가장 유망한 미래의 비접촉 기술이다. RFID 리더의 식별영역에 여러 개의 태그가 있는 경우, 리더의 질의에 대하여 모든 태그들이 동시에 응답을 하기 때문에 충돌이 발생되어 태그를 식별할 수 없게 된다. RFID에서 다중 태그 식별문제는 아주 중요한 핵심 기술로 이것을 해결하기 위해 슬롯기반 알로하 알고리즘, 트리 기반 알고리즘 등과 같은 충돌 방지 알고리즘이 제안되었다. 본 논문에서는 RFID 시스템에서 충돌 트리를 이용한 충돌트리 기반 충돌 방지알고리즘을 제안한다. 제안하는 방법은 효과적인 충돌 방지 메커니즘을 제공하며 메모리래스 알고리즘이다. 제안하는 충돌트리는 다중 태그 식별문제를 해결하기 위한 메커니즘으로 리더와 태그사이 질의와 응답과정에서 만들어진다. 리더가 k 비트로 구성된 프리픽스를 질의하면, 태그는 자신의 식별자와 프리픽스를 비교 하여 일치할 경우 식별자의 K+1 비트에서 마지막 비트까지 리더에게 전송한다. 시뮬레이션 결과에 따라 제안하는 충돌 트리 기반 충돌 방지 알고리즘이 기존의 트리 워킹 알고리즘이나 쿼리 트리 알고리즘보다 좋은 성능을 보임을 알 수 있다.
글로벌 라우팅(global routing)은 VLSI 설계 과정중의 하나로, 네트리스트의 모든 네트들을 연결하기 위하여 각 네트들을 라우팅 영역(routing area)에 할당시키는 문제이며, 글로벌 라우팅에서 최적의 해를 얻기 위해 maze routing 알고리즘, line-probe 알고리즘, shortest path 기반 알고리즘, Steiner tree 기반 알고리즘등이 이용된다. 본 논문에서는 라우팅 그래프에서 최단 경로 Steiner tree 탐색방법인 weighted network heuristic(WNH)과 이를 기반으로 하는 글로벌 라우팅 유전자 알고리즘(genetic algorithm; GA)을 제안하였으며, 제안한 방식을 시뮬레이티드 어닐링(SA) 방식과 비교, 분석하였다.
본 논문에서는 공유 트리에 기반에서 IP 멀티캐스팅을 위한 센트로이드 기반 백본코아트리 (Centroid-based Backbone Core Tree: CBCT) 생성 알고리즘을 제안한다 코아기반트리(Core Based Tree: CBT)는 공유 트리를 이용하여 멀티캐스트 자료를 전달하는 것으로 소스 기반 트리에 비하여 각 라우터가 유지해야 하는 상태 정보의 양이 적고, 적용하기 간단한 장점을 가지고 있지만, 코아 라우터(Core router) 선택이 어렵고, 멀티캐스트 트래픽이 코아로 집중되는 문제점을 가지고 있다. 백본코아트리(Backbone Core Tree: BCT)는 CBT의 단점을 보완하기 위해 제안되었다. BCT는 각 멀티캐스트 그룹마다 특정한 코아 라우터를 선정하지 않는 대신 코아라우터 후보들을 백본코아트리(BCT)로 연결하고, 이 트리를 통하여 코아라우터 후보들이 서로 협동하므로써 위의 두 가지 문제점을 해결한다. 이때 BCT를 어떻게 구성하는가에 따라 멀티캐스트 성능이 크게 변하게 된다. 본 논문에서는 백본코아라우터 후보들 및 이들을 연결하는 BCT를 생성하기 위해 네트워크의 최소 신장 트리와 센트로이드를 이용하는 효율적인 알고리즘 CBCT를 제시한다. 제안된 알고리즘의 성능평가를 위해서 CBT와 CBCT 프로토콜의 성능비교 결과를 보인다.
The shortest-path searching algorithm must not only find a global solution to the destination, but also solve a turn penalty problem (TPP) in an urban road transportation network (URTN). Although the Dijkstra algorithm (DA) as a representative node-based algorithm secures a global solution to the shortest path search (SPS) in the URTN by visiting all the possible paths to the destination, the DA does not solve the TPP and the slow execution speed problem (SEP) because it must search for the temporary minimum cost node. Potts and Oliver solved the TPP by modifying the visiting unit from a node to the link type of a tree-building algorithm like the DA. The Multi Tree Building Algorithm (MTBA), classified as a representative Link Based Algorithm (LBA), does not extricate the SEP because the MTBA must search many of the origin and destination links as well as the candidate links in order to find the SPS. In this paper, we propose a new Link-Based Single Tree Building Algorithm in order to reduce the SEP of the MTBA by applying the breaking rule to the LBA and also prove its usefulness by comparing the proposed with other algorithms such as the node-based DA and the link-based MTBA for the error rates and execution speeds.
Existing tree construction mechanisms are classified into source-based trees and center-based trees. The source-based trees produce a source-rooted tree with a low delay. However, for the applications with multiple senders, the management overheads for routing tables and resource reservations are too high. The center-based trees are easy to implement and manage, but a priori configuration of candidate center nodes is required, and the optimization mature such as tree cost and delay is not considered. In this paper, we propose a new multicast tree building algorithm. The proposal algorithm basically builds a non-center based shared tree. In particular, any center node is not pre-configured. In the purposed algorithm, a multicast node among current tree nodes is suitably assigned to each incoming user: Such a node is selected in a fashion that tree cost and the maximum end-to-end delay on the tree are jointly minimized. The existing and proposed algorithms are compared by experiments. In the simulation results, it is shown that the proposed algorithm approximately provides the cost saving of 30% and the delay saving of 10%, compared to the existing approaches. In conclusion, we see that the cost and delay aspects for multicast trees can be improved at the cost of additional computations.
Decision tree induction algorithm is one of the most widely used methods in classification problems. However, they could be trapped into a local minimum and have no reasonable means to escape from it if tree algorithm uses top-down search algorithm. Further, if irrelevant or redundant features are included in the data set, tree algorithms produces trees that are less accurate than those from the data set with only relevant features. We propose a hybrid algorithm to generate decision tree that uses genetic programming with sequentially selected features. Correlation-based Feature Selection (CFS) method is adopted to find relevant features which are fed to genetic programming sequentially to find optimal trees at each iteration. The new proposed algorithm produce simpler and more understandable decision trees as compared with other decision trees and it is also effective in producing similar or better trees with relatively smaller set of features in the view of cross-validation accuracy.
With the rapid development of educational informatization, teaching methods become diversified characteristics, but a large number of information data restrict the evaluation on teaching subject and object in terms of the effect of English education. Therefore, this study adopts the concept of incremental learning and eigenvalue interval algorithm to improve the weighted decision tree, and builds an English education effect evaluation model based on association rules. According to the results, the average accuracy of information classification of the improved decision tree algorithm is 96.18%, the classification error rate can be as low as 0.02%, and the anti-fitting performance is good. The classification error rate between the improved decision tree algorithm and the original decision tree does not exceed 1%. The proposed educational evaluation method can effectively provide early warning of academic situation analysis, and improve the teachers' professional skills in an accelerated manner and perfect the education system.
본 논문에서는 UOWHF의 도메인을 확장하기 위한 새로운 병렬 처리 알고리즘을 제안한다. 제시되는 알고리즘은 non-complete l-ary tree 에 기반을 두고 있으며 현재까지 최적의 키 길이를 가진 유일한 알고리즘인 Shoup 의 알고리즘과 동일한 최적의 키 길이를 가진다. 또한 Sarkar의 결과를 이용하여 본 논문에서 제시되는 알고리즘이 Shoup의 알고리즘과 함께 Sarkar가 제시한 도메인 확장 알고리즘들의 커다란 집합 중에서 가장 최적화된 키 길이를 가짐을 증명한다. 그러나 제안 알고리즘의 병렬처리능력은 complete tree에 기반 한 구성 방법들 보다 약간 비효율적이다. 그러나 만약 l이 점점 커진다면 알고리즘의 병렬처리능력도 complete tree 에 기반 한 방법들에 가까워진다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권9호
/
pp.3138-3150
/
2021
Multimedia services on the Internet are continuously increasing. Accordingly, the demand for a technology for efficiently delivering multimedia traffic is also constantly increasing. The multicast technique, that delivers the same content to several destinations, is constantly being developed. This technique delivers a content from a source to all destinations through the multicast tree. The multicast tree with low cost increases the utilization of network resources. However, the finding of the optimal multicast tree that has the minimum link costs is very difficult and its calculation complexity is the same as the complexity of the Steiner tree calculation which is NP-complete. Therefore, we need an effective way to obtain a multicast tree with low cost and less calculation time on SDN-based smart network platforms. In this paper, we propose a new multicast tree generation algorithm which produces a multicast tree using an agent trained by model-based meta reinforcement learning. Experiments verified that the proposed algorithm generated multicast trees in less time compared with existing approximation algorithms. It produced multicast trees with low cost in a dynamic network environment compared with the previous DQN-based algorithm.
We present a new algorithm for mining association rules in the large database. Association rules are the relationships of items in the same transaction. These rules provide useful information for marketing. Since Apriori algorithm was introduced in 1994, many researchers have worked to improve Apriori algorithm. However, the drawback of Apriori-based algorithm is that it scans the transaction database repeatedly. The algorithm which we propose scans the database twice. The first scanning of the database collects frequent length l-itemsets. And then, the algorithm scans the database one more time to construct the data structure Common-Item Tree which stores the information about frequent itemsets. To find all frequent itemsets, the algorithm scans Common-Item Tree instead of the database. As scanning Common-Item Tree takes less time than scanning the database, the algorithm proposed is more efficient than Apriori-based algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.